Optimal. Leaf size=29 \[ \frac {1}{x+\frac {4 \left (3+\frac {16 \log ^2(3)}{(-x+x (1+\log (3)))^2}\right )}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 37, normalized size of antiderivative = 1.28, number of steps used = 13, number of rules used = 5, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {1594, 2075, 638, 618, 204} \begin {gather*} \frac {x+4}{2 \left (x^2+2 x+8\right )}-\frac {4-x}{2 \left (x^2-2 x+8\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 618
Rule 638
Rule 1594
Rule 2075
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (192+12 x^2-x^4\right )}{4096+1536 x^2+272 x^4+24 x^6+x^8} \, dx\\ &=\int \left (\frac {4+3 x}{\left (8-2 x+x^2\right )^2}-\frac {1}{2 \left (8-2 x+x^2\right )}+\frac {4-3 x}{\left (8+2 x+x^2\right )^2}-\frac {1}{2 \left (8+2 x+x^2\right )}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {1}{8-2 x+x^2} \, dx\right )-\frac {1}{2} \int \frac {1}{8+2 x+x^2} \, dx+\int \frac {4+3 x}{\left (8-2 x+x^2\right )^2} \, dx+\int \frac {4-3 x}{\left (8+2 x+x^2\right )^2} \, dx\\ &=-\frac {4-x}{2 \left (8-2 x+x^2\right )}+\frac {4+x}{2 \left (8+2 x+x^2\right )}+\frac {1}{2} \int \frac {1}{8-2 x+x^2} \, dx+\frac {1}{2} \int \frac {1}{8+2 x+x^2} \, dx+\operatorname {Subst}\left (\int \frac {1}{-28-x^2} \, dx,x,-2+2 x\right )+\operatorname {Subst}\left (\int \frac {1}{-28-x^2} \, dx,x,2+2 x\right )\\ &=-\frac {4-x}{2 \left (8-2 x+x^2\right )}+\frac {4+x}{2 \left (8+2 x+x^2\right )}-\frac {\tan ^{-1}\left (\frac {-1+x}{\sqrt {7}}\right )}{2 \sqrt {7}}-\frac {\tan ^{-1}\left (\frac {1+x}{\sqrt {7}}\right )}{2 \sqrt {7}}-\operatorname {Subst}\left (\int \frac {1}{-28-x^2} \, dx,x,-2+2 x\right )-\operatorname {Subst}\left (\int \frac {1}{-28-x^2} \, dx,x,2+2 x\right )\\ &=-\frac {4-x}{2 \left (8-2 x+x^2\right )}+\frac {4+x}{2 \left (8+2 x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.55 \begin {gather*} \frac {x^3}{64+12 x^2+x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 16, normalized size = 0.55 \begin {gather*} \frac {x^{3}}{x^{4} + 12 \, x^{2} + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 16, normalized size = 0.55 \begin {gather*} \frac {x^{3}}{x^{4} + 12 \, x^{2} + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.59
method | result | size |
gosper | \(\frac {x^{3}}{x^{4}+12 x^{2}+64}\) | \(17\) |
norman | \(\frac {x^{3}}{x^{4}+12 x^{2}+64}\) | \(17\) |
risch | \(\frac {x^{3}}{x^{4}+12 x^{2}+64}\) | \(17\) |
default | \(-\frac {-x -4}{2 \left (x^{2}+2 x +8\right )}-\frac {-x +4}{2 \left (x^{2}-2 x +8\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 16, normalized size = 0.55 \begin {gather*} \frac {x^{3}}{x^{4} + 12 \, x^{2} + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 16, normalized size = 0.55 \begin {gather*} \frac {x^3}{x^4+12\,x^2+64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 12, normalized size = 0.41 \begin {gather*} \frac {x^{3}}{x^{4} + 12 x^{2} + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________