Optimal. Leaf size=16 \[ x+e^{x^2} \log (x)-2 (x+\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {14, 43, 2288} \begin {gather*} e^{x^2} \log (x)-x-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-2-x}{x}+\frac {e^{x^2} \left (1+2 x^2 \log (x)\right )}{x}\right ) \, dx\\ &=\int \frac {-2-x}{x} \, dx+\int \frac {e^{x^2} \left (1+2 x^2 \log (x)\right )}{x} \, dx\\ &=e^{x^2} \log (x)+\int \left (-1-\frac {2}{x}\right ) \, dx\\ &=-x-2 \log (x)+e^{x^2} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 1.00 \begin {gather*} -x-2 \log (x)+e^{x^2} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 13, normalized size = 0.81 \begin {gather*} {\left (e^{\left (x^{2}\right )} - 2\right )} \log \relax (x) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 15, normalized size = 0.94 \begin {gather*} e^{\left (x^{2}\right )} \log \relax (x) - x - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 16, normalized size = 1.00
method | result | size |
default | \({\mathrm e}^{x^{2}} \ln \relax (x )-x -2 \ln \relax (x )\) | \(16\) |
norman | \({\mathrm e}^{x^{2}} \ln \relax (x )-x -2 \ln \relax (x )\) | \(16\) |
risch | \({\mathrm e}^{x^{2}} \ln \relax (x )-x -2 \ln \relax (x )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 15, normalized size = 0.94 \begin {gather*} e^{\left (x^{2}\right )} \log \relax (x) - x - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.50, size = 15, normalized size = 0.94 \begin {gather*} {\mathrm {e}}^{x^2}\,\ln \relax (x)-2\,\ln \relax (x)-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 14, normalized size = 0.88 \begin {gather*} - x + e^{x^{2}} \log {\relax (x )} - 2 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________