Optimal. Leaf size=22 \[ x \log \left (\frac {5}{x}\right ) \left (-5-i \pi -2 x^2+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 61, normalized size of antiderivative = 2.77, number of steps used = 6, number of rules used = 3, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {2313, 2295, 2361} \begin {gather*} -\left (2 x^3+(4+i \pi ) x\right ) \log \left (\frac {5}{x}\right )-i \pi x+(5+i \pi ) x-5 x+x \left (-\log \left (\frac {5}{x}\right )\right )+x \log \left (\frac {5}{x}\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2295
Rule 2313
Rule 2361
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(5+i \pi ) x+\frac {2 x^3}{3}+\int \left (-4-i \pi -6 x^2\right ) \log \left (\frac {5}{x}\right ) \, dx+\int \left (-1+\log \left (\frac {5}{x}\right )\right ) \log (x) \, dx\\ &=(5+i \pi ) x+\frac {2 x^3}{3}-\left ((4+i \pi ) x+2 x^3\right ) \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right ) \log (x)+\int \left (-i \pi -2 \left (2+x^2\right )\right ) \, dx-\int \log \left (\frac {5}{x}\right ) \, dx\\ &=-x+(5+i \pi ) x-i \pi x+\frac {2 x^3}{3}-x \log \left (\frac {5}{x}\right )-\left ((4+i \pi ) x+2 x^3\right ) \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right ) \log (x)-2 \int \left (2+x^2\right ) \, dx\\ &=-5 x+(5+i \pi ) x-i \pi x-x \log \left (\frac {5}{x}\right )-\left ((4+i \pi ) x+2 x^3\right ) \log \left (\frac {5}{x}\right )+x \log \left (\frac {5}{x}\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 1.00 \begin {gather*} x \log \left (\frac {5}{x}\right ) \left (-5-i \pi -2 x^2+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 39, normalized size = 1.77 \begin {gather*} -x \log \left (\frac {5}{x}\right )^{2} - {\left (2 \, x^{3} - {\left (-i \, \pi - 5\right )} x - x \log \relax (5)\right )} \log \left (\frac {5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.38, size = 74, normalized size = 3.36 \begin {gather*} -\frac {1}{3} \, x^{3} {\left (\frac {3 i \, \pi }{x^{2}} + \frac {12}{x^{2}} + 2\right )} + \frac {2}{3} \, x^{3} + x \log \relax (5) \log \relax (x) - x \log \relax (x)^{2} + i \, \pi x - x \log \relax (5) + x \log \relax (x) - {\left (2 \, x^{3} + i \, \pi x + 4 \, x\right )} \log \left (\frac {5}{x}\right ) + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 37, normalized size = 1.68
method | result | size |
norman | \(x \ln \relax (x ) \ln \left (\frac {5}{x}\right )+\left (-i \pi -5\right ) x \ln \left (\frac {5}{x}\right )-2 x^{3} \ln \left (\frac {5}{x}\right )\) | \(37\) |
risch | \(-x \ln \relax (x )^{2}+\frac {\left (2+2 \ln \relax (5)\right ) x \ln \relax (x )}{2}-x \ln \relax (5)+\left (-i \pi x -2 x^{3}-4 x \right ) \ln \left (\frac {5}{x}\right )\) | \(46\) |
default | \(x \ln \relax (5) \ln \relax (x )-x \ln \relax (5)+\ln \relax (x ) \ln \left (\frac {1}{x}\right ) x -x \ln \left (\frac {1}{x}\right )-i \pi x \ln \left (\frac {5}{x}\right )-4 x \ln \left (\frac {5}{x}\right )-2 x^{3} \ln \left (\frac {5}{x}\right )\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 55, normalized size = 2.50 \begin {gather*} x \log \relax (x) \log \left (\frac {5}{x}\right ) + i \, \pi x + {\left (-i \, \pi - 4\right )} x - {\left (2 \, x^{3} + i \, \pi x + 4 \, x\right )} \log \left (\frac {5}{x}\right ) - x \log \left (\frac {5}{x}\right ) + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.54, size = 25, normalized size = 1.14 \begin {gather*} -x\,\left (\ln \left (\frac {1}{x}\right )+\ln \relax (5)\right )\,\left (2\,x^2-\ln \relax (x)+5+\Pi \,1{}\mathrm {i}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 51, normalized size = 2.32 \begin {gather*} - 2 x^{3} \log {\relax (5 )} - x \log {\relax (x )}^{2} + x \left (- 5 \log {\relax (5 )} - i \pi \log {\relax (5 )}\right ) + \left (2 x^{3} + x \log {\relax (5 )} + 5 x + i \pi x\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________