Optimal. Leaf size=24 \[ 5+x-4 \log \left (-4-3 e^{1+\frac {e^5}{x}}+x+\log (5)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x^2-x^3+e^{\frac {e^5}{x}} \left (12 e^6+3 e x^2\right )-x^2 \log (5)}{4 x^2+3 e^{1+\frac {e^5}{x}} x^2-x^3-x^2 \log (5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 x^2-x^3+e^{\frac {e^5}{x}} \left (12 e^6+3 e x^2\right )-x^2 \log (5)}{3 e^{1+\frac {e^5}{x}} x^2-x^3+x^2 (4-\log (5))} \, dx\\ &=\int \frac {-x^3+e^{\frac {e^5}{x}} \left (12 e^6+3 e x^2\right )+x^2 (8-\log (5))}{3 e^{1+\frac {e^5}{x}} x^2-x^3+x^2 (4-\log (5))} \, dx\\ &=\int \left (\frac {4 e^5+x^2}{x^2}+\frac {4 \left (e^5 x+x^2-e^5 (4-\log (5))\right )}{x^2 \left (3 e^{1+\frac {e^5}{x}}-x+4 \left (1-\frac {\log (5)}{4}\right )\right )}\right ) \, dx\\ &=4 \int \frac {e^5 x+x^2-e^5 (4-\log (5))}{x^2 \left (3 e^{1+\frac {e^5}{x}}-x+4 \left (1-\frac {\log (5)}{4}\right )\right )} \, dx+\int \frac {4 e^5+x^2}{x^2} \, dx\\ &=4 \int \left (\frac {1}{3 e^{1+\frac {e^5}{x}}-x+4 \left (1-\frac {\log (5)}{4}\right )}+\frac {e^5}{x \left (3 e^{1+\frac {e^5}{x}}-x+4 \left (1-\frac {\log (5)}{4}\right )\right )}+\frac {e^5 (-4+\log (5))}{x^2 \left (3 e^{1+\frac {e^5}{x}}-x+4 \left (1-\frac {\log (5)}{4}\right )\right )}\right ) \, dx+\int \left (1+\frac {4 e^5}{x^2}\right ) \, dx\\ &=-\frac {4 e^5}{x}+x+4 \int \frac {1}{3 e^{1+\frac {e^5}{x}}-x+4 \left (1-\frac {\log (5)}{4}\right )} \, dx+\left (4 e^5\right ) \int \frac {1}{x \left (3 e^{1+\frac {e^5}{x}}-x+4 \left (1-\frac {\log (5)}{4}\right )\right )} \, dx-\left (4 e^5 (4-\log (5))\right ) \int \frac {1}{x^2 \left (3 e^{1+\frac {e^5}{x}}-x+4 \left (1-\frac {\log (5)}{4}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 27, normalized size = 1.12 \begin {gather*} x-4 \log \left (4+3 e^{1+\frac {e^5}{x}}-x-\log (5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 25, normalized size = 1.04 \begin {gather*} x - 4 \, \log \left (-x + 3 \, e^{\left (\frac {x + e^{5}}{x}\right )} - \log \relax (5) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.61, size = 67, normalized size = 2.79 \begin {gather*} -x {\left (\frac {4 \, e^{10} \log \left (-\frac {e^{5} \log \relax (5)}{x} + \frac {4 \, e^{5}}{x} + \frac {3 \, e^{\left (\frac {e^{5}}{x} + 6\right )}}{x} - e^{5}\right )}{x} - \frac {4 \, e^{10} \log \left (\frac {e^{5}}{x}\right )}{x} - e^{10}\right )} e^{\left (-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 23, normalized size = 0.96
method | result | size |
risch | \(x -4 \ln \left ({\mathrm e}^{\frac {{\mathrm e}^{5}}{x}}-\frac {\left (\ln \relax (5)-4+x \right ) {\mathrm e}^{-1}}{3}\right )\) | \(23\) |
norman | \(x -4 \ln \left (3 \,{\mathrm e}^{\frac {{\mathrm e}^{5}}{x}} {\mathrm e}-\ln \relax (5)-x +4\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 25, normalized size = 1.04 \begin {gather*} x - 4 \, \log \left (-\frac {1}{3} \, {\left (x - 3 \, e^{\left (\frac {e^{5}}{x} + 1\right )} + \log \relax (5) - 4\right )} e^{\left (-1\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.89, size = 31, normalized size = 1.29 \begin {gather*} x+4\,\ln \left (\frac {1}{x}\right )-4\,\ln \left (\frac {x+\ln \relax (5)-3\,{\mathrm {e}}^{\frac {{\mathrm {e}}^5}{x}}\,\mathrm {e}-4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 22, normalized size = 0.92 \begin {gather*} x - 4 \log {\left (\frac {- x - \log {\relax (5 )} + 4}{3 e} + e^{\frac {e^{5}}{x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________