Optimal. Leaf size=21 \[ -2 x+e^2 x+\frac {x^2}{\log ^2(15+e)}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.10, number of steps used = 3, number of rules used = 2, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {12, 14} \begin {gather*} \frac {x^2}{\log ^2(15+e)}-\left (2-e^2\right ) x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {2 x^2+\left (1-2 x+e^2 x\right ) \log ^2(15+e)}{x} \, dx}{\log ^2(15+e)}\\ &=\frac {\int \left (2 x-\left (2-e^2\right ) \log ^2(15+e)+\frac {\log ^2(15+e)}{x}\right ) \, dx}{\log ^2(15+e)}\\ &=-\left (\left (2-e^2\right ) x\right )+\frac {x^2}{\log ^2(15+e)}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.00 \begin {gather*} -2 x+e^2 x+\frac {x^2}{\log ^2(15+e)}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 30, normalized size = 1.43 \begin {gather*} \frac {{\left (x e^{2} - 2 \, x + \log \relax (x)\right )} \log \left (e + 15\right )^{2} + x^{2}}{\log \left (e + 15\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 44, normalized size = 2.10 \begin {gather*} \frac {x e^{2} \log \left (e + 15\right )^{2} - 2 \, x \log \left (e + 15\right )^{2} + \log \left (e + 15\right )^{2} \log \left ({\left | x \right |}\right ) + x^{2}}{\log \left (e + 15\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 1.05
method | result | size |
risch | \(\ln \relax (x )+{\mathrm e}^{2} x -2 x +\frac {x^{2}}{\ln \left ({\mathrm e}+15\right )^{2}}\) | \(22\) |
norman | \(\frac {\frac {x^{2}}{\ln \left ({\mathrm e}+15\right )}+\ln \left ({\mathrm e}+15\right ) \left ({\mathrm e}^{2}-2\right ) x}{\ln \left ({\mathrm e}+15\right )}+\ln \relax (x )\) | \(35\) |
default | \(\frac {x^{2}+{\mathrm e}^{2} \ln \left ({\mathrm e}+15\right )^{2} x -2 x \ln \left ({\mathrm e}+15\right )^{2}+\ln \left ({\mathrm e}+15\right )^{2} \ln \relax (x )}{\ln \left ({\mathrm e}+15\right )^{2}}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 35, normalized size = 1.67 \begin {gather*} \frac {x {\left (e^{2} - 2\right )} \log \left (e + 15\right )^{2} + \log \relax (x) \log \left (e + 15\right )^{2} + x^{2}}{\log \left (e + 15\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 20, normalized size = 0.95 \begin {gather*} \ln \relax (x)+x\,\left ({\mathrm {e}}^2-2\right )+\frac {x^2}{{\ln \left (\mathrm {e}+15\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.13, size = 46, normalized size = 2.19 \begin {gather*} \frac {x^{2} + x \left (- 2 \log {\left (e + 15 \right )}^{2} + e^{2} \log {\left (e + 15 \right )}^{2}\right ) + \log {\relax (x )} \log {\left (e + 15 \right )}^{2}}{\log {\left (e + 15 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________