Optimal. Leaf size=21 \[ \left (-4-x+\log \left (-50+x-\log \left (e^{x^2} x\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {6688, 12, 6686} \begin {gather*} \left (-\log \left (-\log \left (e^{x^2} x\right )+x-50\right )+x+4\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (1-51 x+3 x^2-x \log \left (e^{x^2} x\right )\right ) \left (-4-x+\log \left (-50+x-\log \left (e^{x^2} x\right )\right )\right )}{x \left (50-x+\log \left (e^{x^2} x\right )\right )} \, dx\\ &=2 \int \frac {\left (1-51 x+3 x^2-x \log \left (e^{x^2} x\right )\right ) \left (-4-x+\log \left (-50+x-\log \left (e^{x^2} x\right )\right )\right )}{x \left (50-x+\log \left (e^{x^2} x\right )\right )} \, dx\\ &=\left (4+x-\log \left (-50+x-\log \left (e^{x^2} x\right )\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 21, normalized size = 1.00 \begin {gather*} \left (4+x-\log \left (-50+x-\log \left (e^{x^2} x\right )\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 40, normalized size = 1.90 \begin {gather*} x^{2} - 2 \, {\left (x + 4\right )} \log \left (x - \log \left (x e^{\left (x^{2}\right )}\right ) - 50\right ) + \log \left (x - \log \left (x e^{\left (x^{2}\right )}\right ) - 50\right )^{2} + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 53, normalized size = 2.52 \begin {gather*} x^{2} - 2 \, x \log \left (-x^{2} + x - \log \relax (x) - 50\right ) + \log \left (-x^{2} + x - \log \relax (x) - 50\right )^{2} + 8 \, x - 8 \, \log \left (-x^{2} + x - \log \relax (x) - 50\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.17, size = 245, normalized size = 11.67
method | result | size |
risch | \(\ln \left (-\ln \relax (x )-\ln \left ({\mathrm e}^{x^{2}}\right )+\frac {i \pi \,\mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right ) \left (-\mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right )+\mathrm {csgn}\left (i {\mathrm e}^{x^{2}}\right )\right )}{2}+x -50\right )^{2}-2 x \ln \left (-\ln \relax (x )-\ln \left ({\mathrm e}^{x^{2}}\right )+\frac {i \pi \,\mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right ) \left (-\mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right )+\mathrm {csgn}\left (i {\mathrm e}^{x^{2}}\right )\right )}{2}+x -50\right )+x^{2}+8 x -8 \ln \left (\ln \left ({\mathrm e}^{x^{2}}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x^{2}}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x^{2}}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right )^{2}+\pi \mathrm {csgn}\left (i x \,{\mathrm e}^{x^{2}}\right )^{3}-2 i x +2 i \ln \relax (x )+100 i\right )}{2}\right )\) | \(245\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 40, normalized size = 1.90 \begin {gather*} x^{2} - 2 \, {\left (x + 4\right )} \log \left (-x^{2} + x - \log \relax (x) - 50\right ) + \log \left (-x^{2} + x - \log \relax (x) - 50\right )^{2} + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.71, size = 51, normalized size = 2.43 \begin {gather*} 8\,x-8\,\ln \left (\ln \relax (x)-x+x^2+50\right )+{\ln \left (x-\ln \relax (x)-x^2-50\right )}^2-2\,x\,\ln \left (x-\ln \relax (x)-x^2-50\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.74, size = 53, normalized size = 2.52 \begin {gather*} x^{2} - 2 x \log {\left (x - \log {\left (x e^{x^{2}} \right )} - 50 \right )} + 8 x - 8 \log {\left (- x + \log {\left (x e^{x^{2}} \right )} + 50 \right )} + \log {\left (x - \log {\left (x e^{x^{2}} \right )} - 50 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________