3.69.3 1+2x+e12x+x2(2x+2x2)xdx

Optimal. Leaf size=19 35e2+e(1+x)2+2x+log(x)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 13, normalized size of antiderivative = 0.68, number of steps used = 6, number of rules used = 4, integrand size = 29, number of rulesintegrand size = 0.138, Rules used = {14, 2227, 2209, 43} 2x+e(x1)2+log(x)

Antiderivative was successfully verified.

[In]

Int[(1 + 2*x + E^(1 - 2*x + x^2)*(-2*x + 2*x^2))/x,x]

[Out]

E^(-1 + x)^2 + 2*x + Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 2227

Int[(u_.)*(F_)^((a_.) + (b_.)*(v_)), x_Symbol] :> Int[u*F^(a + b*NormalizePowerOfLinear[v, x]), x] /; FreeQ[{F
, a, b}, x] && PolynomialQ[u, x] && PowerOfLinearQ[v, x] &&  !PowerOfLinearMatchQ[v, x]

Rubi steps

integral=(2e12x+x2(1+x)+1+2xx)dx=2e12x+x2(1+x)dx+1+2xxdx=2e(1+x)2(1+x)dx+(2+1x)dx=e(1+x)2+2x+log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 13, normalized size = 0.68 e(1+x)2+2x+log(x)

Antiderivative was successfully verified.

[In]

Integrate[(1 + 2*x + E^(1 - 2*x + x^2)*(-2*x + 2*x^2))/x,x]

[Out]

E^(-1 + x)^2 + 2*x + Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 15, normalized size = 0.79 2x+e(x22x+1)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2-2*x)*exp(x^2-2*x+1)+2*x+1)/x,x, algorithm="fricas")

[Out]

2*x + e^(x^2 - 2*x + 1) + log(x)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 15, normalized size = 0.79 2x+e(x22x+1)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2-2*x)*exp(x^2-2*x+1)+2*x+1)/x,x, algorithm="giac")

[Out]

2*x + e^(x^2 - 2*x + 1) + log(x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 13, normalized size = 0.68




method result size



risch 2x+ln(x)+e(x1)2 13
default 2x+ln(x)+ex22x+1 16
norman 2x+ln(x)+ex22x+1 16



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^2-2*x)*exp(x^2-2*x+1)+2*x+1)/x,x,method=_RETURNVERBOSE)

[Out]

2*x+ln(x)+exp((x-1)^2)

________________________________________________________________________________________

maxima [C]  time = 0.40, size = 51, normalized size = 2.68 π(x1)(erf((x1)2)1)(x1)2+iπerf(ixi)+2x+e((x1)2)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2-2*x)*exp(x^2-2*x+1)+2*x+1)/x,x, algorithm="maxima")

[Out]

sqrt(pi)*(x - 1)*(erf(sqrt(-(x - 1)^2)) - 1)/sqrt(-(x - 1)^2) + I*sqrt(pi)*erf(I*x - I) + 2*x + e^((x - 1)^2)
+ log(x)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 17, normalized size = 0.89 2x+ln(x)+e2xex2e

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x - exp(x^2 - 2*x + 1)*(2*x - 2*x^2) + 1)/x,x)

[Out]

2*x + log(x) + exp(-2*x)*exp(x^2)*exp(1)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 15, normalized size = 0.79 2x+ex22x+1+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**2-2*x)*exp(x**2-2*x+1)+2*x+1)/x,x)

[Out]

2*x + exp(x**2 - 2*x + 1) + log(x)

________________________________________________________________________________________