3.69.4 1025x+5x2+5x3+ex(x3x4)20log(x)x3dx

Optimal. Leaf size=30 exx+5(5+x2+(2+x2)(1+log(x))x)x

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 36, normalized size of antiderivative = 1.20, number of steps used = 9, number of rules used = 4, integrand size = 38, number of rulesintegrand size = 0.105, Rules used = {14, 2176, 2194, 2304} 10x2+10log(x)x2+5x+exex(x+1)+25x+5log(x)

Antiderivative was successfully verified.

[In]

Int[(-10 - 25*x + 5*x^2 + 5*x^3 + E^x*(-x^3 - x^4) - 20*Log[x])/x^3,x]

[Out]

E^x + 10/x^2 + 25/x + 5*x - E^x*(1 + x) + 5*Log[x] + (10*Log[x])/x^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rubi steps

integral=(ex(1+x)+5(25x+x2+x34log(x))x3)dx=525x+x2+x34log(x)x3dxex(1+x)dx=ex(1+x)+5(25x+x2+x3x34log(x)x3)dx+exdx=exex(1+x)+525x+x2+x3x3dx20log(x)x3dx=ex+5x2ex(1+x)+10log(x)x2+5(12x35x2+1x)dx=ex+10x2+25x+5xex(1+x)+5log(x)+10log(x)x2

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 28, normalized size = 0.93 1025x+(5+ex)x35(2+x2)log(x)x2

Antiderivative was successfully verified.

[In]

Integrate[(-10 - 25*x + 5*x^2 + 5*x^3 + E^x*(-x^3 - x^4) - 20*Log[x])/x^3,x]

[Out]

-((-10 - 25*x + (-5 + E^x)*x^3 - 5*(2 + x^2)*Log[x])/x^2)

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 30, normalized size = 1.00 x3ex5x35(x2+2)log(x)25x10x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-20*log(x)+(-x^4-x^3)*exp(x)+5*x^3+5*x^2-25*x-10)/x^3,x, algorithm="fricas")

[Out]

-(x^3*e^x - 5*x^3 - 5*(x^2 + 2)*log(x) - 25*x - 10)/x^2

________________________________________________________________________________________

giac [A]  time = 0.19, size = 32, normalized size = 1.07 x3ex5x35x2log(x)25x10log(x)10x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-20*log(x)+(-x^4-x^3)*exp(x)+5*x^3+5*x^2-25*x-10)/x^3,x, algorithm="giac")

[Out]

-(x^3*e^x - 5*x^3 - 5*x^2*log(x) - 25*x - 10*log(x) - 10)/x^2

________________________________________________________________________________________

maple [A]  time = 0.04, size = 31, normalized size = 1.03




method result size



default exx+5x+5ln(x)+25x+10x2+10ln(x)x2 31
norman 10+25x+5x3exx3+10ln(x)x2+5ln(x) 31
risch 10ln(x)x2+exx3+5x2ln(x)+5x3+25x+10x2 37



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-20*ln(x)+(-x^4-x^3)*exp(x)+5*x^3+5*x^2-25*x-10)/x^3,x,method=_RETURNVERBOSE)

[Out]

-exp(x)*x+5*x+5*ln(x)+25/x+10/x^2+10*ln(x)/x^2

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 36, normalized size = 1.20 (x1)ex+5x+25x+10log(x)x2+10x2ex+5log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-20*log(x)+(-x^4-x^3)*exp(x)+5*x^3+5*x^2-25*x-10)/x^3,x, algorithm="maxima")

[Out]

-(x - 1)*e^x + 5*x + 25/x + 10*log(x)/x^2 + 10/x^2 - e^x + 5*log(x)

________________________________________________________________________________________

mupad [B]  time = 4.24, size = 25, normalized size = 0.83 5ln(x)x(ex5)+25x+10ln(x)+10x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(25*x + 20*log(x) + exp(x)*(x^3 + x^4) - 5*x^2 - 5*x^3 + 10)/x^3,x)

[Out]

5*log(x) - x*(exp(x) - 5) + (25*x + 10*log(x) + 10)/x^2

________________________________________________________________________________________

sympy [A]  time = 0.30, size = 29, normalized size = 0.97 xex+5x+5log(x)+25x+10x2+10log(x)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-20*ln(x)+(-x**4-x**3)*exp(x)+5*x**3+5*x**2-25*x-10)/x**3,x)

[Out]

-x*exp(x) + 5*x + 5*log(x) + (25*x + 10)/x**2 + 10*log(x)/x**2

________________________________________________________________________________________