Optimal. Leaf size=21 \[ 5-x^2 \left (6-e^3 x+\log (4)\right )^2 \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.09, antiderivative size = 105, normalized size of antiderivative = 5.00, number of steps used = 9, number of rules used = 3, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {6, 2356, 2304} \begin {gather*} -e^6 x^4 \log (x)+4 e^3 x^3+2 e^3 x^3 (6+\log (4)) \log (x)-\frac {2}{3} e^3 x^3 (6+\log (4))+\frac {2}{3} e^3 x^3 \log (4)-\frac {1}{2} x^2 \left (36+\log ^2(4)\right )-x^2 (6+\log (4))^2 \log (x)+\frac {1}{2} x^2 (6+\log (4))^2-6 x^2 \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2304
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (12 e^3 x^2-e^6 x^3+\left (-12 x+2 e^3 x^2\right ) \log (4)+x \left (-36-\log ^2(4)\right )+\left (-72 x+36 e^3 x^2-4 e^6 x^3+\left (-24 x+6 e^3 x^2\right ) \log (4)-2 x \log ^2(4)\right ) \log (x)\right ) \, dx\\ &=4 e^3 x^3-\frac {e^6 x^4}{4}-\frac {1}{2} x^2 \left (36+\log ^2(4)\right )+\log (4) \int \left (-12 x+2 e^3 x^2\right ) \, dx+\int \left (-72 x+36 e^3 x^2-4 e^6 x^3+\left (-24 x+6 e^3 x^2\right ) \log (4)-2 x \log ^2(4)\right ) \log (x) \, dx\\ &=4 e^3 x^3-\frac {e^6 x^4}{4}-6 x^2 \log (4)+\frac {2}{3} e^3 x^3 \log (4)-\frac {1}{2} x^2 \left (36+\log ^2(4)\right )+\int \left (36 e^3 x^2-4 e^6 x^3+\left (-24 x+6 e^3 x^2\right ) \log (4)+x \left (-72-2 \log ^2(4)\right )\right ) \log (x) \, dx\\ &=4 e^3 x^3-\frac {e^6 x^4}{4}-6 x^2 \log (4)+\frac {2}{3} e^3 x^3 \log (4)-\frac {1}{2} x^2 \left (36+\log ^2(4)\right )+\int \left (-4 e^6 x^3 \log (x)+6 e^3 x^2 (6+\log (4)) \log (x)-2 x (6+\log (4))^2 \log (x)\right ) \, dx\\ &=4 e^3 x^3-\frac {e^6 x^4}{4}-6 x^2 \log (4)+\frac {2}{3} e^3 x^3 \log (4)-\frac {1}{2} x^2 \left (36+\log ^2(4)\right )-\left (4 e^6\right ) \int x^3 \log (x) \, dx+\left (6 e^3 (6+\log (4))\right ) \int x^2 \log (x) \, dx-\left (2 (6+\log (4))^2\right ) \int x \log (x) \, dx\\ &=4 e^3 x^3-6 x^2 \log (4)+\frac {2}{3} e^3 x^3 \log (4)-\frac {2}{3} e^3 x^3 (6+\log (4))+\frac {1}{2} x^2 (6+\log (4))^2-\frac {1}{2} x^2 \left (36+\log ^2(4)\right )-e^6 x^4 \log (x)+2 e^3 x^3 (6+\log (4)) \log (x)-x^2 (6+\log (4))^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 69, normalized size = 3.29 \begin {gather*} -36 x^2 \log (x)+12 e^3 x^3 \log (x)-e^6 x^4 \log (x)-12 x^2 \log (2) \log (x)-6 x^2 \log (4) \log (x)+2 e^3 x^3 \log (4) \log (x)-2 x^2 \log (2) \log (4) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 48, normalized size = 2.29 \begin {gather*} -{\left (x^{4} e^{6} - 12 \, x^{3} e^{3} + 4 \, x^{2} \log \relax (2)^{2} + 36 \, x^{2} - 4 \, {\left (x^{3} e^{3} - 6 \, x^{2}\right )} \log \relax (2)\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 89, normalized size = 4.24 \begin {gather*} -x^{4} e^{6} \log \relax (x) + 4 \, x^{3} e^{3} \log \relax (2) \log \relax (x) - \frac {4}{3} \, x^{3} e^{3} \log \relax (2) + 12 \, x^{3} e^{3} \log \relax (x) - 4 \, x^{2} \log \relax (2)^{2} \log \relax (x) - 24 \, x^{2} \log \relax (2) \log \relax (x) + 12 \, x^{2} \log \relax (2) - 36 \, x^{2} \log \relax (x) + \frac {4}{3} \, {\left (x^{3} e^{3} - 9 \, x^{2}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 38, normalized size = 1.81
method | result | size |
risch | \(-x^{2} \left (x^{2} {\mathrm e}^{6}-4 \,{\mathrm e}^{3} \ln \relax (2) x -12 x \,{\mathrm e}^{3}+4 \ln \relax (2)^{2}+24 \ln \relax (2)+36\right ) \ln \relax (x )\) | \(38\) |
norman | \(\left (4 \,{\mathrm e}^{3} \ln \relax (2)+12 \,{\mathrm e}^{3}\right ) x^{3} \ln \relax (x )+\left (-4 \ln \relax (2)^{2}-24 \ln \relax (2)-36\right ) x^{2} \ln \relax (x )-{\mathrm e}^{6} x^{4} \ln \relax (x )\) | \(48\) |
default | \(-{\mathrm e}^{6} x^{4} \ln \relax (x )+4 \,{\mathrm e}^{3} \ln \relax (2) x^{3} \ln \relax (x )+12 \,{\mathrm e}^{3} x^{3} \ln \relax (x )-4 \ln \relax (2)^{2} \ln \relax (x ) x^{2}-24 x^{2} \ln \relax (2) \ln \relax (x )-36 x^{2} \ln \relax (x )\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 116, normalized size = 5.52 \begin {gather*} -\frac {4}{3} \, {\left (e^{3} \log \relax (2) + 3 \, e^{3}\right )} x^{3} + 4 \, x^{3} e^{3} - 2 \, x^{2} \log \relax (2)^{2} + 2 \, {\left (\log \relax (2)^{2} + 6 \, \log \relax (2) + 9\right )} x^{2} - 18 \, x^{2} + \frac {4}{3} \, {\left (x^{3} e^{3} - 9 \, x^{2}\right )} \log \relax (2) - {\left (x^{4} e^{6} - 12 \, x^{3} e^{3} + 4 \, x^{2} \log \relax (2)^{2} + 36 \, x^{2} - 4 \, {\left (x^{3} e^{3} - 6 \, x^{2}\right )} \log \relax (2)\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.56, size = 18, normalized size = 0.86 \begin {gather*} -x^2\,\ln \relax (x)\,{\left (\ln \relax (4)-x\,{\mathrm {e}}^3+6\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 53, normalized size = 2.52 \begin {gather*} \left (- x^{4} e^{6} + 4 x^{3} e^{3} \log {\relax (2 )} + 12 x^{3} e^{3} - 36 x^{2} - 24 x^{2} \log {\relax (2 )} - 4 x^{2} \log {\relax (2 )}^{2}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________