3.69.5
Optimal. Leaf size=21
________________________________________________________________________________________
Rubi [B] time = 0.09, antiderivative size = 105, normalized size of antiderivative = 5.00,
number of steps used = 9, number of rules used = 3, integrand size = 87, = 0.034, Rules used =
{6, 2356, 2304}
Antiderivative was successfully verified.
[In]
Int[-36*x + 12*E^3*x^2 - E^6*x^3 + (-12*x + 2*E^3*x^2)*Log[4] - x*Log[4]^2 + (-72*x + 36*E^3*x^2 - 4*E^6*x^3 +
(-24*x + 6*E^3*x^2)*Log[4] - 2*x*Log[4]^2)*Log[x],x]
[Out]
4*E^3*x^3 - 6*x^2*Log[4] + (2*E^3*x^3*Log[4])/3 - (2*E^3*x^3*(6 + Log[4]))/3 + (x^2*(6 + Log[4])^2)/2 - (x^2*(
36 + Log[4]^2))/2 - E^6*x^4*Log[x] + 2*E^3*x^3*(6 + Log[4])*Log[x] - x^2*(6 + Log[4])^2*Log[x]
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2356
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Polyx*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 69, normalized size = 3.29
Antiderivative was successfully verified.
[In]
Integrate[-36*x + 12*E^3*x^2 - E^6*x^3 + (-12*x + 2*E^3*x^2)*Log[4] - x*Log[4]^2 + (-72*x + 36*E^3*x^2 - 4*E^6
*x^3 + (-24*x + 6*E^3*x^2)*Log[4] - 2*x*Log[4]^2)*Log[x],x]
[Out]
-36*x^2*Log[x] + 12*E^3*x^3*Log[x] - E^6*x^4*Log[x] - 12*x^2*Log[2]*Log[x] - 6*x^2*Log[4]*Log[x] + 2*E^3*x^3*L
og[4]*Log[x] - 2*x^2*Log[2]*Log[4]*Log[x]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 48, normalized size = 2.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*x*log(2)^2+2*(6*x^2*exp(3)-24*x)*log(2)-4*x^3*exp(3)^2+36*x^2*exp(3)-72*x)*log(x)-4*x*log(2)^2+2
*(2*x^2*exp(3)-12*x)*log(2)-x^3*exp(3)^2+12*x^2*exp(3)-36*x,x, algorithm="fricas")
[Out]
-(x^4*e^6 - 12*x^3*e^3 + 4*x^2*log(2)^2 + 36*x^2 - 4*(x^3*e^3 - 6*x^2)*log(2))*log(x)
________________________________________________________________________________________
giac [B] time = 0.19, size = 89, normalized size = 4.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*x*log(2)^2+2*(6*x^2*exp(3)-24*x)*log(2)-4*x^3*exp(3)^2+36*x^2*exp(3)-72*x)*log(x)-4*x*log(2)^2+2
*(2*x^2*exp(3)-12*x)*log(2)-x^3*exp(3)^2+12*x^2*exp(3)-36*x,x, algorithm="giac")
[Out]
-x^4*e^6*log(x) + 4*x^3*e^3*log(2)*log(x) - 4/3*x^3*e^3*log(2) + 12*x^3*e^3*log(x) - 4*x^2*log(2)^2*log(x) - 2
4*x^2*log(2)*log(x) + 12*x^2*log(2) - 36*x^2*log(x) + 4/3*(x^3*e^3 - 9*x^2)*log(2)
________________________________________________________________________________________
maple [A] time = 0.04, size = 38, normalized size = 1.81
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-8*x*ln(2)^2+2*(6*x^2*exp(3)-24*x)*ln(2)-4*x^3*exp(3)^2+36*x^2*exp(3)-72*x)*ln(x)-4*x*ln(2)^2+2*(2*x^2*ex
p(3)-12*x)*ln(2)-x^3*exp(3)^2+12*x^2*exp(3)-36*x,x,method=_RETURNVERBOSE)
[Out]
-x^2*(x^2*exp(6)-4*exp(3)*ln(2)*x-12*x*exp(3)+4*ln(2)^2+24*ln(2)+36)*ln(x)
________________________________________________________________________________________
maxima [B] time = 0.37, size = 116, normalized size = 5.52
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*x*log(2)^2+2*(6*x^2*exp(3)-24*x)*log(2)-4*x^3*exp(3)^2+36*x^2*exp(3)-72*x)*log(x)-4*x*log(2)^2+2
*(2*x^2*exp(3)-12*x)*log(2)-x^3*exp(3)^2+12*x^2*exp(3)-36*x,x, algorithm="maxima")
[Out]
-4/3*(e^3*log(2) + 3*e^3)*x^3 + 4*x^3*e^3 - 2*x^2*log(2)^2 + 2*(log(2)^2 + 6*log(2) + 9)*x^2 - 18*x^2 + 4/3*(x
^3*e^3 - 9*x^2)*log(2) - (x^4*e^6 - 12*x^3*e^3 + 4*x^2*log(2)^2 + 36*x^2 - 4*(x^3*e^3 - 6*x^2)*log(2))*log(x)
________________________________________________________________________________________
mupad [B] time = 4.56, size = 18, normalized size = 0.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(12*x^2*exp(3) - 36*x - x^3*exp(6) - 2*log(2)*(12*x - 2*x^2*exp(3)) - 4*x*log(2)^2 - log(x)*(72*x - 36*x^2*
exp(3) + 4*x^3*exp(6) + 2*log(2)*(24*x - 6*x^2*exp(3)) + 8*x*log(2)^2),x)
[Out]
-x^2*log(x)*(log(4) - x*exp(3) + 6)^2
________________________________________________________________________________________
sympy [B] time = 0.17, size = 53, normalized size = 2.52
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*x*ln(2)**2+2*(6*x**2*exp(3)-24*x)*ln(2)-4*x**3*exp(3)**2+36*x**2*exp(3)-72*x)*ln(x)-4*x*ln(2)**2
+2*(2*x**2*exp(3)-12*x)*ln(2)-x**3*exp(3)**2+12*x**2*exp(3)-36*x,x)
[Out]
(-x**4*exp(6) + 4*x**3*exp(3)*log(2) + 12*x**3*exp(3) - 36*x**2 - 24*x**2*log(2) - 4*x**2*log(2)**2)*log(x)
________________________________________________________________________________________