3.69.5 (36x+12e3x2e6x3+(12x+2e3x2)log(4)xlog2(4)+(72x+36e3x24e6x3+(24x+6e3x2)log(4)2xlog2(4))log(x))dx

Optimal. Leaf size=21 5x2(6e3x+log(4))2log(x)

________________________________________________________________________________________

Rubi [B]  time = 0.09, antiderivative size = 105, normalized size of antiderivative = 5.00, number of steps used = 9, number of rules used = 3, integrand size = 87, number of rulesintegrand size = 0.034, Rules used = {6, 2356, 2304} e6x4log(x)+4e3x3+2e3x3(6+log(4))log(x)23e3x3(6+log(4))+23e3x3log(4)12x2(36+log2(4))x2(6+log(4))2log(x)+12x2(6+log(4))26x2log(4)

Antiderivative was successfully verified.

[In]

Int[-36*x + 12*E^3*x^2 - E^6*x^3 + (-12*x + 2*E^3*x^2)*Log[4] - x*Log[4]^2 + (-72*x + 36*E^3*x^2 - 4*E^6*x^3 +
 (-24*x + 6*E^3*x^2)*Log[4] - 2*x*Log[4]^2)*Log[x],x]

[Out]

4*E^3*x^3 - 6*x^2*Log[4] + (2*E^3*x^3*Log[4])/3 - (2*E^3*x^3*(6 + Log[4]))/3 + (x^2*(6 + Log[4])^2)/2 - (x^2*(
36 + Log[4]^2))/2 - E^6*x^4*Log[x] + 2*E^3*x^3*(6 + Log[4])*Log[x] - x^2*(6 + Log[4])^2*Log[x]

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2356

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Polyx*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x]

Rubi steps

integral=(12e3x2e6x3+(12x+2e3x2)log(4)+x(36log2(4))+(72x+36e3x24e6x3+(24x+6e3x2)log(4)2xlog2(4))log(x))dx=4e3x3e6x4412x2(36+log2(4))+log(4)(12x+2e3x2)dx+(72x+36e3x24e6x3+(24x+6e3x2)log(4)2xlog2(4))log(x)dx=4e3x3e6x446x2log(4)+23e3x3log(4)12x2(36+log2(4))+(36e3x24e6x3+(24x+6e3x2)log(4)+x(722log2(4)))log(x)dx=4e3x3e6x446x2log(4)+23e3x3log(4)12x2(36+log2(4))+(4e6x3log(x)+6e3x2(6+log(4))log(x)2x(6+log(4))2log(x))dx=4e3x3e6x446x2log(4)+23e3x3log(4)12x2(36+log2(4))(4e6)x3log(x)dx+(6e3(6+log(4)))x2log(x)dx(2(6+log(4))2)xlog(x)dx=4e3x36x2log(4)+23e3x3log(4)23e3x3(6+log(4))+12x2(6+log(4))212x2(36+log2(4))e6x4log(x)+2e3x3(6+log(4))log(x)x2(6+log(4))2log(x)

________________________________________________________________________________________

Mathematica [B]  time = 0.09, size = 69, normalized size = 3.29 36x2log(x)+12e3x3log(x)e6x4log(x)12x2log(2)log(x)6x2log(4)log(x)+2e3x3log(4)log(x)2x2log(2)log(4)log(x)

Antiderivative was successfully verified.

[In]

Integrate[-36*x + 12*E^3*x^2 - E^6*x^3 + (-12*x + 2*E^3*x^2)*Log[4] - x*Log[4]^2 + (-72*x + 36*E^3*x^2 - 4*E^6
*x^3 + (-24*x + 6*E^3*x^2)*Log[4] - 2*x*Log[4]^2)*Log[x],x]

[Out]

-36*x^2*Log[x] + 12*E^3*x^3*Log[x] - E^6*x^4*Log[x] - 12*x^2*Log[2]*Log[x] - 6*x^2*Log[4]*Log[x] + 2*E^3*x^3*L
og[4]*Log[x] - 2*x^2*Log[2]*Log[4]*Log[x]

________________________________________________________________________________________

fricas [B]  time = 0.63, size = 48, normalized size = 2.29 (x4e612x3e3+4x2log(2)2+36x24(x3e36x2)log(2))log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x*log(2)^2+2*(6*x^2*exp(3)-24*x)*log(2)-4*x^3*exp(3)^2+36*x^2*exp(3)-72*x)*log(x)-4*x*log(2)^2+2
*(2*x^2*exp(3)-12*x)*log(2)-x^3*exp(3)^2+12*x^2*exp(3)-36*x,x, algorithm="fricas")

[Out]

-(x^4*e^6 - 12*x^3*e^3 + 4*x^2*log(2)^2 + 36*x^2 - 4*(x^3*e^3 - 6*x^2)*log(2))*log(x)

________________________________________________________________________________________

giac [B]  time = 0.19, size = 89, normalized size = 4.24 x4e6log(x)+4x3e3log(2)log(x)43x3e3log(2)+12x3e3log(x)4x2log(2)2log(x)24x2log(2)log(x)+12x2log(2)36x2log(x)+43(x3e39x2)log(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x*log(2)^2+2*(6*x^2*exp(3)-24*x)*log(2)-4*x^3*exp(3)^2+36*x^2*exp(3)-72*x)*log(x)-4*x*log(2)^2+2
*(2*x^2*exp(3)-12*x)*log(2)-x^3*exp(3)^2+12*x^2*exp(3)-36*x,x, algorithm="giac")

[Out]

-x^4*e^6*log(x) + 4*x^3*e^3*log(2)*log(x) - 4/3*x^3*e^3*log(2) + 12*x^3*e^3*log(x) - 4*x^2*log(2)^2*log(x) - 2
4*x^2*log(2)*log(x) + 12*x^2*log(2) - 36*x^2*log(x) + 4/3*(x^3*e^3 - 9*x^2)*log(2)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 38, normalized size = 1.81




method result size



risch x2(x2e64e3ln(2)x12xe3+4ln(2)2+24ln(2)+36)ln(x) 38
norman (4e3ln(2)+12e3)x3ln(x)+(4ln(2)224ln(2)36)x2ln(x)e6x4ln(x) 48
default e6x4ln(x)+4e3ln(2)x3ln(x)+12e3x3ln(x)4ln(2)2ln(x)x224x2ln(2)ln(x)36x2ln(x) 60



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-8*x*ln(2)^2+2*(6*x^2*exp(3)-24*x)*ln(2)-4*x^3*exp(3)^2+36*x^2*exp(3)-72*x)*ln(x)-4*x*ln(2)^2+2*(2*x^2*ex
p(3)-12*x)*ln(2)-x^3*exp(3)^2+12*x^2*exp(3)-36*x,x,method=_RETURNVERBOSE)

[Out]

-x^2*(x^2*exp(6)-4*exp(3)*ln(2)*x-12*x*exp(3)+4*ln(2)^2+24*ln(2)+36)*ln(x)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 116, normalized size = 5.52 43(e3log(2)+3e3)x3+4x3e32x2log(2)2+2(log(2)2+6log(2)+9)x218x2+43(x3e39x2)log(2)(x4e612x3e3+4x2log(2)2+36x24(x3e36x2)log(2))log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x*log(2)^2+2*(6*x^2*exp(3)-24*x)*log(2)-4*x^3*exp(3)^2+36*x^2*exp(3)-72*x)*log(x)-4*x*log(2)^2+2
*(2*x^2*exp(3)-12*x)*log(2)-x^3*exp(3)^2+12*x^2*exp(3)-36*x,x, algorithm="maxima")

[Out]

-4/3*(e^3*log(2) + 3*e^3)*x^3 + 4*x^3*e^3 - 2*x^2*log(2)^2 + 2*(log(2)^2 + 6*log(2) + 9)*x^2 - 18*x^2 + 4/3*(x
^3*e^3 - 9*x^2)*log(2) - (x^4*e^6 - 12*x^3*e^3 + 4*x^2*log(2)^2 + 36*x^2 - 4*(x^3*e^3 - 6*x^2)*log(2))*log(x)

________________________________________________________________________________________

mupad [B]  time = 4.56, size = 18, normalized size = 0.86 x2ln(x)(ln(4)xe3+6)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(12*x^2*exp(3) - 36*x - x^3*exp(6) - 2*log(2)*(12*x - 2*x^2*exp(3)) - 4*x*log(2)^2 - log(x)*(72*x - 36*x^2*
exp(3) + 4*x^3*exp(6) + 2*log(2)*(24*x - 6*x^2*exp(3)) + 8*x*log(2)^2),x)

[Out]

-x^2*log(x)*(log(4) - x*exp(3) + 6)^2

________________________________________________________________________________________

sympy [B]  time = 0.17, size = 53, normalized size = 2.52 (x4e6+4x3e3log(2)+12x3e336x224x2log(2)4x2log(2)2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x*ln(2)**2+2*(6*x**2*exp(3)-24*x)*ln(2)-4*x**3*exp(3)**2+36*x**2*exp(3)-72*x)*ln(x)-4*x*ln(2)**2
+2*(2*x**2*exp(3)-12*x)*ln(2)-x**3*exp(3)**2+12*x**2*exp(3)-36*x,x)

[Out]

(-x**4*exp(6) + 4*x**3*exp(3)*log(2) + 12*x**3*exp(3) - 36*x**2 - 24*x**2*log(2) - 4*x**2*log(2)**2)*log(x)

________________________________________________________________________________________