Optimal. Leaf size=21 \[ 1+e^{1+x} (1-x) \left (-5+x-x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 35, normalized size of antiderivative = 1.67, number of steps used = 12, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {2196, 2194, 2176} \begin {gather*} e^{x+1} x^3-2 e^{x+1} x^2+6 e^{x+1} x-5 e^{x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{1+x}+2 e^{1+x} x+e^{1+x} x^2+e^{1+x} x^3\right ) \, dx\\ &=2 \int e^{1+x} x \, dx+\int e^{1+x} \, dx+\int e^{1+x} x^2 \, dx+\int e^{1+x} x^3 \, dx\\ &=e^{1+x}+2 e^{1+x} x+e^{1+x} x^2+e^{1+x} x^3-2 \int e^{1+x} \, dx-2 \int e^{1+x} x \, dx-3 \int e^{1+x} x^2 \, dx\\ &=-e^{1+x}-2 e^{1+x} x^2+e^{1+x} x^3+2 \int e^{1+x} \, dx+6 \int e^{1+x} x \, dx\\ &=e^{1+x}+6 e^{1+x} x-2 e^{1+x} x^2+e^{1+x} x^3-6 \int e^{1+x} \, dx\\ &=-5 e^{1+x}+6 e^{1+x} x-2 e^{1+x} x^2+e^{1+x} x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 0.90 \begin {gather*} e^{1+x} \left (-5+6 x-2 x^2+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 18, normalized size = 0.86 \begin {gather*} {\left (x^{3} - 2 \, x^{2} + 6 \, x - 5\right )} e^{\left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 18, normalized size = 0.86 \begin {gather*} {\left (x^{3} - 2 \, x^{2} + 6 \, x - 5\right )} e^{\left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.90
method | result | size |
gosper | \(\left (x^{3}-2 x^{2}+6 x -5\right ) {\mathrm e}^{x +1}\) | \(19\) |
risch | \(\left (x^{3}-2 x^{2}+6 x -5\right ) {\mathrm e}^{x +1}\) | \(19\) |
norman | \(x^{3} {\mathrm e}^{x +1}+6 x \,{\mathrm e}^{x +1}-2 x^{2} {\mathrm e}^{x +1}-5 \,{\mathrm e}^{x +1}\) | \(32\) |
derivativedivides | \({\mathrm e}^{x +1} \left (x +1\right )^{3}-5 \,{\mathrm e}^{x +1} \left (x +1\right )^{2}+13 \,{\mathrm e}^{x +1} \left (x +1\right )-14 \,{\mathrm e}^{x +1}\) | \(38\) |
default | \({\mathrm e}^{x +1} \left (x +1\right )^{3}-5 \,{\mathrm e}^{x +1} \left (x +1\right )^{2}+13 \,{\mathrm e}^{x +1} \left (x +1\right )-14 \,{\mathrm e}^{x +1}\) | \(38\) |
meijerg | \({\mathrm e} \left (6-\frac {\left (-4 x^{3}+12 x^{2}-24 x +24\right ) {\mathrm e}^{x}}{4}\right )-{\mathrm e} \left (2-\frac {\left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}}{3}\right )+2 \,{\mathrm e} \left (1-\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{2}\right )-\left (1-{\mathrm e}^{x}\right ) {\mathrm e}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 63, normalized size = 3.00 \begin {gather*} {\left (x^{3} e - 3 \, x^{2} e + 6 \, x e - 6 \, e\right )} e^{x} + {\left (x^{2} e - 2 \, x e + 2 \, e\right )} e^{x} + 2 \, {\left (x e - e\right )} e^{x} + e^{\left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 18, normalized size = 0.86 \begin {gather*} {\mathrm {e}}^{x+1}\,\left (x^3-2\,x^2+6\,x-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 17, normalized size = 0.81 \begin {gather*} \left (x^{3} - 2 x^{2} + 6 x - 5\right ) e^{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________