3.69.6 e1+x(1+2x+x2+x3)dx

Optimal. Leaf size=21 1+e1+x(1x)(5+xx2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 35, normalized size of antiderivative = 1.67, number of steps used = 12, number of rules used = 3, integrand size = 17, number of rulesintegrand size = 0.176, Rules used = {2196, 2194, 2176} ex+1x32ex+1x2+6ex+1x5ex+1

Antiderivative was successfully verified.

[In]

Int[E^(1 + x)*(1 + 2*x + x^2 + x^3),x]

[Out]

-5*E^(1 + x) + 6*E^(1 + x)*x - 2*E^(1 + x)*x^2 + E^(1 + x)*x^3

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=(e1+x+2e1+xx+e1+xx2+e1+xx3)dx=2e1+xxdx+e1+xdx+e1+xx2dx+e1+xx3dx=e1+x+2e1+xx+e1+xx2+e1+xx32e1+xdx2e1+xxdx3e1+xx2dx=e1+x2e1+xx2+e1+xx3+2e1+xdx+6e1+xxdx=e1+x+6e1+xx2e1+xx2+e1+xx36e1+xdx=5e1+x+6e1+xx2e1+xx2+e1+xx3

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 19, normalized size = 0.90 e1+x(5+6x2x2+x3)

Antiderivative was successfully verified.

[In]

Integrate[E^(1 + x)*(1 + 2*x + x^2 + x^3),x]

[Out]

E^(1 + x)*(-5 + 6*x - 2*x^2 + x^3)

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 18, normalized size = 0.86 (x32x2+6x5)e(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+x^2+2*x+1)*exp(x+1),x, algorithm="fricas")

[Out]

(x^3 - 2*x^2 + 6*x - 5)*e^(x + 1)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 18, normalized size = 0.86 (x32x2+6x5)e(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+x^2+2*x+1)*exp(x+1),x, algorithm="giac")

[Out]

(x^3 - 2*x^2 + 6*x - 5)*e^(x + 1)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 19, normalized size = 0.90




method result size



gosper (x32x2+6x5)ex+1 19
risch (x32x2+6x5)ex+1 19
norman x3ex+1+6xex+12x2ex+15ex+1 32
derivativedivides ex+1(x+1)35ex+1(x+1)2+13ex+1(x+1)14ex+1 38
default ex+1(x+1)35ex+1(x+1)2+13ex+1(x+1)14ex+1 38
meijerg e(6(4x3+12x224x+24)ex4)e(2(3x26x+6)ex3)+2e(1(2x+2)ex2)(1ex)e 71



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3+x^2+2*x+1)*exp(x+1),x,method=_RETURNVERBOSE)

[Out]

(x^3-2*x^2+6*x-5)*exp(x+1)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 63, normalized size = 3.00 (x3e3x2e+6xe6e)ex+(x2e2xe+2e)ex+2(xee)ex+e(x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+x^2+2*x+1)*exp(x+1),x, algorithm="maxima")

[Out]

(x^3*e - 3*x^2*e + 6*x*e - 6*e)*e^x + (x^2*e - 2*x*e + 2*e)*e^x + 2*(x*e - e)*e^x + e^(x + 1)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 18, normalized size = 0.86 ex+1(x32x2+6x5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x + 1)*(2*x + x^2 + x^3 + 1),x)

[Out]

exp(x + 1)*(6*x - 2*x^2 + x^3 - 5)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 17, normalized size = 0.81 (x32x2+6x5)ex+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**3+x**2+2*x+1)*exp(x+1),x)

[Out]

(x**3 - 2*x**2 + 6*x - 5)*exp(x + 1)

________________________________________________________________________________________