3.69.7 (48600x+20250e2+2xx)log(log(x))+(48600x+e2+2x(20250x81000x2))log(x)log2(log(x))(248832+518400e2+2x+432000e4+4x+180000e6+6x+37500e8+8x+3125e10+10x)log(x)dx

Optimal. Leaf size=25 25x2log2(log(x))(4+53e2+2x)4

________________________________________________________________________________________

Rubi [F]  time = 2.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (48600x+20250e2+2xx)log(log(x))+(48600x+e2+2x(20250x81000x2))log(x)log2(log(x))(248832+518400e2+2x+432000e4+4x+180000e6+6x+37500e8+8x+3125e10+10x)log(x)dx

Verification is not applicable to the result.

[In]

Int[((48600*x + 20250*E^(2 + 2*x)*x)*Log[Log[x]] + (48600*x + E^(2 + 2*x)*(20250*x - 81000*x^2))*Log[x]*Log[Lo
g[x]]^2)/((248832 + 518400*E^(2 + 2*x) + 432000*E^(4 + 4*x) + 180000*E^(6 + 6*x) + 37500*E^(8 + 8*x) + 3125*E^
(10 + 10*x))*Log[x]),x]

[Out]

4050*Defer[Int][(x*Log[Log[x]])/((12 + 5*E^(2 + 2*x))^4*Log[x]), x] + 4050*Defer[Int][(x*Log[Log[x]]^2)/(12 +
5*E^(2 + 2*x))^4, x] + 194400*Defer[Int][(x^2*Log[Log[x]]^2)/(12 + 5*E^(2 + 2*x))^5, x] - 16200*Defer[Int][(x^
2*Log[Log[x]]^2)/(12 + 5*E^(2 + 2*x))^4, x]

Rubi steps

integral=4050xlog(log(x))(12+5e2+2x(12+5e2+2x(1+4x))log(x)log(log(x)))(12+5e2+2x)5log(x)dx=4050xlog(log(x))(12+5e2+2x(12+5e2+2x(1+4x))log(x)log(log(x)))(12+5e2+2x)5log(x)dx=4050(48x2log2(log(x))(12+5e2+2x)5xlog(log(x))(1log(x)log(log(x))+4xlog(x)log(log(x)))(12+5e2+2x)4log(x))dx=(4050xlog(log(x))(1log(x)log(log(x))+4xlog(x)log(log(x)))(12+5e2+2x)4log(x)dx)+194400x2log2(log(x))(12+5e2+2x)5dx=(4050(xlog(log(x))(12+5e2+2x)4log(x)xlog2(log(x))(12+5e2+2x)4+4x2log2(log(x))(12+5e2+2x)4)dx)+194400x2log2(log(x))(12+5e2+2x)5dx=4050xlog(log(x))(12+5e2+2x)4log(x)dx+4050xlog2(log(x))(12+5e2+2x)4dx16200x2log2(log(x))(12+5e2+2x)4dx+194400x2log2(log(x))(12+5e2+2x)5dx

________________________________________________________________________________________

Mathematica [A]  time = 0.40, size = 23, normalized size = 0.92 2025x2log2(log(x))(12+5e2+2x)4

Antiderivative was successfully verified.

[In]

Integrate[((48600*x + 20250*E^(2 + 2*x)*x)*Log[Log[x]] + (48600*x + E^(2 + 2*x)*(20250*x - 81000*x^2))*Log[x]*
Log[Log[x]]^2)/((248832 + 518400*E^(2 + 2*x) + 432000*E^(4 + 4*x) + 180000*E^(6 + 6*x) + 37500*E^(8 + 8*x) + 3
125*E^(10 + 10*x))*Log[x]),x]

[Out]

(2025*x^2*Log[Log[x]]^2)/(12 + 5*E^(2 + 2*x))^4

________________________________________________________________________________________

fricas [B]  time = 0.68, size = 46, normalized size = 1.84 2025x2log(log(x))2625e(8x+8)+6000e(6x+6)+21600e(4x+4)+34560e(2x+2)+20736

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-81000*x^2+20250*x)*exp(x+1)^2+48600*x)*log(x)*log(log(x))^2+(20250*x*exp(x+1)^2+48600*x)*log(log
(x)))/(3125*exp(x+1)^10+37500*exp(x+1)^8+180000*exp(x+1)^6+432000*exp(x+1)^4+518400*exp(x+1)^2+248832)/log(x),
x, algorithm="fricas")

[Out]

2025*x^2*log(log(x))^2/(625*e^(8*x + 8) + 6000*e^(6*x + 6) + 21600*e^(4*x + 4) + 34560*e^(2*x + 2) + 20736)

________________________________________________________________________________________

giac [B]  time = 0.17, size = 46, normalized size = 1.84 2025x2log(log(x))2625e(8x+8)+6000e(6x+6)+21600e(4x+4)+34560e(2x+2)+20736

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-81000*x^2+20250*x)*exp(x+1)^2+48600*x)*log(x)*log(log(x))^2+(20250*x*exp(x+1)^2+48600*x)*log(log
(x)))/(3125*exp(x+1)^10+37500*exp(x+1)^8+180000*exp(x+1)^6+432000*exp(x+1)^4+518400*exp(x+1)^2+248832)/log(x),
x, algorithm="giac")

[Out]

2025*x^2*log(log(x))^2/(625*e^(8*x + 8) + 6000*e^(6*x + 6) + 21600*e^(4*x + 4) + 34560*e^(2*x + 2) + 20736)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 23, normalized size = 0.92




method result size



risch 2025x2ln(ln(x))2(5e2x+2+12)4 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-81000*x^2+20250*x)*exp(x+1)^2+48600*x)*ln(x)*ln(ln(x))^2+(20250*x*exp(x+1)^2+48600*x)*ln(ln(x)))/(3125
*exp(x+1)^10+37500*exp(x+1)^8+180000*exp(x+1)^6+432000*exp(x+1)^4+518400*exp(x+1)^2+248832)/ln(x),x,method=_RE
TURNVERBOSE)

[Out]

2025*x^2/(5*exp(2*x+2)+12)^4*ln(ln(x))^2

________________________________________________________________________________________

maxima [B]  time = 0.47, size = 46, normalized size = 1.84 2025x2log(log(x))2625e(8x+8)+6000e(6x+6)+21600e(4x+4)+34560e(2x+2)+20736

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-81000*x^2+20250*x)*exp(x+1)^2+48600*x)*log(x)*log(log(x))^2+(20250*x*exp(x+1)^2+48600*x)*log(log
(x)))/(3125*exp(x+1)^10+37500*exp(x+1)^8+180000*exp(x+1)^6+432000*exp(x+1)^4+518400*exp(x+1)^2+248832)/log(x),
x, algorithm="maxima")

[Out]

2025*x^2*log(log(x))^2/(625*e^(8*x + 8) + 6000*e^(6*x + 6) + 21600*e^(4*x + 4) + 34560*e^(2*x + 2) + 20736)

________________________________________________________________________________________

mupad [B]  time = 4.36, size = 46, normalized size = 1.84 81x2ln(ln(x))225(6912e2x+2125+864e4x+425+48e6x+65+e8x+8+20736625)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(log(x))*(48600*x + 20250*x*exp(2*x + 2)) + log(log(x))^2*log(x)*(48600*x + exp(2*x + 2)*(20250*x - 81
000*x^2)))/(log(x)*(518400*exp(2*x + 2) + 432000*exp(4*x + 4) + 180000*exp(6*x + 6) + 37500*exp(8*x + 8) + 312
5*exp(10*x + 10) + 248832)),x)

[Out]

(81*x^2*log(log(x))^2)/(25*((6912*exp(2*x + 2))/125 + (864*exp(4*x + 4))/25 + (48*exp(6*x + 6))/5 + exp(8*x +
8) + 20736/625))

________________________________________________________________________________________

sympy [B]  time = 0.37, size = 49, normalized size = 1.96 81x2log(log(x))26912e2x+25+864e4x+4+240e6x+6+25e8x+8+2073625

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-81000*x**2+20250*x)*exp(x+1)**2+48600*x)*ln(x)*ln(ln(x))**2+(20250*x*exp(x+1)**2+48600*x)*ln(ln(
x)))/(3125*exp(x+1)**10+37500*exp(x+1)**8+180000*exp(x+1)**6+432000*exp(x+1)**4+518400*exp(x+1)**2+248832)/ln(
x),x)

[Out]

81*x**2*log(log(x))**2/(6912*exp(2*x + 2)/5 + 864*exp(4*x + 4) + 240*exp(6*x + 6) + 25*exp(8*x + 8) + 20736/25
)

________________________________________________________________________________________