3.69.7
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [F] time = 2.85, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[((48600*x + 20250*E^(2 + 2*x)*x)*Log[Log[x]] + (48600*x + E^(2 + 2*x)*(20250*x - 81000*x^2))*Log[x]*Log[Lo
g[x]]^2)/((248832 + 518400*E^(2 + 2*x) + 432000*E^(4 + 4*x) + 180000*E^(6 + 6*x) + 37500*E^(8 + 8*x) + 3125*E^
(10 + 10*x))*Log[x]),x]
[Out]
4050*Defer[Int][(x*Log[Log[x]])/((12 + 5*E^(2 + 2*x))^4*Log[x]), x] + 4050*Defer[Int][(x*Log[Log[x]]^2)/(12 +
5*E^(2 + 2*x))^4, x] + 194400*Defer[Int][(x^2*Log[Log[x]]^2)/(12 + 5*E^(2 + 2*x))^5, x] - 16200*Defer[Int][(x^
2*Log[Log[x]]^2)/(12 + 5*E^(2 + 2*x))^4, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 23, normalized size = 0.92
Antiderivative was successfully verified.
[In]
Integrate[((48600*x + 20250*E^(2 + 2*x)*x)*Log[Log[x]] + (48600*x + E^(2 + 2*x)*(20250*x - 81000*x^2))*Log[x]*
Log[Log[x]]^2)/((248832 + 518400*E^(2 + 2*x) + 432000*E^(4 + 4*x) + 180000*E^(6 + 6*x) + 37500*E^(8 + 8*x) + 3
125*E^(10 + 10*x))*Log[x]),x]
[Out]
(2025*x^2*Log[Log[x]]^2)/(12 + 5*E^(2 + 2*x))^4
________________________________________________________________________________________
fricas [B] time = 0.68, size = 46, normalized size = 1.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-81000*x^2+20250*x)*exp(x+1)^2+48600*x)*log(x)*log(log(x))^2+(20250*x*exp(x+1)^2+48600*x)*log(log
(x)))/(3125*exp(x+1)^10+37500*exp(x+1)^8+180000*exp(x+1)^6+432000*exp(x+1)^4+518400*exp(x+1)^2+248832)/log(x),
x, algorithm="fricas")
[Out]
2025*x^2*log(log(x))^2/(625*e^(8*x + 8) + 6000*e^(6*x + 6) + 21600*e^(4*x + 4) + 34560*e^(2*x + 2) + 20736)
________________________________________________________________________________________
giac [B] time = 0.17, size = 46, normalized size = 1.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-81000*x^2+20250*x)*exp(x+1)^2+48600*x)*log(x)*log(log(x))^2+(20250*x*exp(x+1)^2+48600*x)*log(log
(x)))/(3125*exp(x+1)^10+37500*exp(x+1)^8+180000*exp(x+1)^6+432000*exp(x+1)^4+518400*exp(x+1)^2+248832)/log(x),
x, algorithm="giac")
[Out]
2025*x^2*log(log(x))^2/(625*e^(8*x + 8) + 6000*e^(6*x + 6) + 21600*e^(4*x + 4) + 34560*e^(2*x + 2) + 20736)
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-81000*x^2+20250*x)*exp(x+1)^2+48600*x)*ln(x)*ln(ln(x))^2+(20250*x*exp(x+1)^2+48600*x)*ln(ln(x)))/(3125
*exp(x+1)^10+37500*exp(x+1)^8+180000*exp(x+1)^6+432000*exp(x+1)^4+518400*exp(x+1)^2+248832)/ln(x),x,method=_RE
TURNVERBOSE)
[Out]
2025*x^2/(5*exp(2*x+2)+12)^4*ln(ln(x))^2
________________________________________________________________________________________
maxima [B] time = 0.47, size = 46, normalized size = 1.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-81000*x^2+20250*x)*exp(x+1)^2+48600*x)*log(x)*log(log(x))^2+(20250*x*exp(x+1)^2+48600*x)*log(log
(x)))/(3125*exp(x+1)^10+37500*exp(x+1)^8+180000*exp(x+1)^6+432000*exp(x+1)^4+518400*exp(x+1)^2+248832)/log(x),
x, algorithm="maxima")
[Out]
2025*x^2*log(log(x))^2/(625*e^(8*x + 8) + 6000*e^(6*x + 6) + 21600*e^(4*x + 4) + 34560*e^(2*x + 2) + 20736)
________________________________________________________________________________________
mupad [B] time = 4.36, size = 46, normalized size = 1.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(log(x))*(48600*x + 20250*x*exp(2*x + 2)) + log(log(x))^2*log(x)*(48600*x + exp(2*x + 2)*(20250*x - 81
000*x^2)))/(log(x)*(518400*exp(2*x + 2) + 432000*exp(4*x + 4) + 180000*exp(6*x + 6) + 37500*exp(8*x + 8) + 312
5*exp(10*x + 10) + 248832)),x)
[Out]
(81*x^2*log(log(x))^2)/(25*((6912*exp(2*x + 2))/125 + (864*exp(4*x + 4))/25 + (48*exp(6*x + 6))/5 + exp(8*x +
8) + 20736/625))
________________________________________________________________________________________
sympy [B] time = 0.37, size = 49, normalized size = 1.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-81000*x**2+20250*x)*exp(x+1)**2+48600*x)*ln(x)*ln(ln(x))**2+(20250*x*exp(x+1)**2+48600*x)*ln(ln(
x)))/(3125*exp(x+1)**10+37500*exp(x+1)**8+180000*exp(x+1)**6+432000*exp(x+1)**4+518400*exp(x+1)**2+248832)/ln(
x),x)
[Out]
81*x**2*log(log(x))**2/(6912*exp(2*x + 2)/5 + 864*exp(4*x + 4) + 240*exp(6*x + 6) + 25*exp(8*x + 8) + 20736/25
)
________________________________________________________________________________________