3.69.8 10x+2x210x32x4+(60+30x+23x210x3x4)log(110(20+10x+x2))(20x4+10x5+x6)log2(110(20+10x+x2))dx

Optimal. Leaf size=24 1x+xx2log(2+x+x210)

________________________________________________________________________________________

Rubi [F]  time = 1.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 10x+2x210x32x4+(60+30x+23x210x3x4)log(110(20+10x+x2))(20x4+10x5+x6)log2(110(20+10x+x2))dx

Verification is not applicable to the result.

[In]

Int[(10*x + 2*x^2 - 10*x^3 - 2*x^4 + (-60 + 30*x + 23*x^2 - 10*x^3 - x^4)*Log[(-20 + 10*x + x^2)/10])/((-20*x^
4 + 10*x^5 + x^6)*Log[(-20 + 10*x + x^2)/10]^2),x]

[Out]

(31*Defer[Int][1/((-10 + 6*Sqrt[5] - 2*x)*Log[-2 + x + x^2/10]^2), x])/(20*Sqrt[5]) - Defer[Int][1/(x^3*Log[-2
 + x + x^2/10]^2), x]/2 - (7*Defer[Int][1/(x^2*Log[-2 + x + x^2/10]^2), x])/20 + (3*Defer[Int][1/(x*Log[-2 + x
 + x^2/10]^2), x])/10 - ((3 - Sqrt[5])*Defer[Int][1/((10 - 6*Sqrt[5] + 2*x)*Log[-2 + x + x^2/10]^2), x])/10 +
(31*Defer[Int][1/((10 + 6*Sqrt[5] + 2*x)*Log[-2 + x + x^2/10]^2), x])/(20*Sqrt[5]) - ((3 + Sqrt[5])*Defer[Int]
[1/((10 + 6*Sqrt[5] + 2*x)*Log[-2 + x + x^2/10]^2), x])/10 + 3*Defer[Int][1/(x^4*Log[-2 + x + x^2/10]), x] - D
efer[Int][1/(x^2*Log[-2 + x + x^2/10]), x]

Rubi steps

integral=10x+2x210x32x4+(60+30x+23x210x3x4)log(110(20+10x+x2))x4(20+10x+x2)log2(110(20+10x+x2))dx=(2(5x+5x2+x3)x3(20+10x+x2)log2(2+x+x210)+3x2x4log(2+x+x210))dx=(25x+5x2+x3x3(20+10x+x2)log2(2+x+x210)dx)+3x2x4log(2+x+x210)dx=(2(14x3log2(2+x+x210)+740x2log2(2+x+x210)320xlog2(2+x+x210)+3(31+2x)40(20+10x+x2)log2(2+x+x210))dx)+(3x4log(2+x+x210)1x2log(2+x+x210))dx=(32031+2x(20+10x+x2)log2(2+x+x210)dx)+3101xlog2(2+x+x210)dx7201x2log2(2+x+x210)dx121x3log2(2+x+x210)dx+31x4log(2+x+x210)dx1x2log(2+x+x210)dx=(320(31(20+10x+x2)log2(2+x+x210)+2x(20+10x+x2)log2(2+x+x210))dx)+3101xlog2(2+x+x210)dx7201x2log2(2+x+x210)dx121x3log2(2+x+x210)dx+31x4log(2+x+x210)dx1x2log(2+x+x210)dx=3101xlog2(2+x+x210)dx310x(20+10x+x2)log2(2+x+x210)dx7201x2log2(2+x+x210)dx121x3log2(2+x+x210)dx+31x4log(2+x+x210)dx93201(20+10x+x2)log2(2+x+x210)dx1x2log(2+x+x210)dx=(310(153(1065+2x)log2(2+x+x210)+1+53(10+65+2x)log2(2+x+x210))dx)+3101xlog2(2+x+x210)dx7201x2log2(2+x+x210)dx121x3log2(2+x+x210)dx+31x4log(2+x+x210)dx9320(135(10+652x)log2(2+x+x210)135(10+65+2x)log2(2+x+x210))dx1x2log(2+x+x210)dx=3101xlog2(2+x+x210)dx7201x2log2(2+x+x210)dx121x3log2(2+x+x210)dx+31x4log(2+x+x210)dx+311(10+652x)log2(2+x+x210)dx205+311(10+65+2x)log2(2+x+x210)dx205110(35)1(1065+2x)log2(2+x+x210)dx110(3+5)1(10+65+2x)log2(2+x+x210)dx1x2log(2+x+x210)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.38, size = 25, normalized size = 1.04 1x2x3log(2+x+x210)

Antiderivative was successfully verified.

[In]

Integrate[(10*x + 2*x^2 - 10*x^3 - 2*x^4 + (-60 + 30*x + 23*x^2 - 10*x^3 - x^4)*Log[(-20 + 10*x + x^2)/10])/((
-20*x^4 + 10*x^5 + x^6)*Log[(-20 + 10*x + x^2)/10]^2),x]

[Out]

-((1 - x^2)/(x^3*Log[-2 + x + x^2/10]))

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 20, normalized size = 0.83 x21x3log(110x2+x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^4-10*x^3+23*x^2+30*x-60)*log(1/10*x^2+x-2)-2*x^4-10*x^3+2*x^2+10*x)/(x^6+10*x^5-20*x^4)/log(1/1
0*x^2+x-2)^2,x, algorithm="fricas")

[Out]

(x^2 - 1)/(x^3*log(1/10*x^2 + x - 2))

________________________________________________________________________________________

giac [A]  time = 0.18, size = 20, normalized size = 0.83 x21x3log(110x2+x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^4-10*x^3+23*x^2+30*x-60)*log(1/10*x^2+x-2)-2*x^4-10*x^3+2*x^2+10*x)/(x^6+10*x^5-20*x^4)/log(1/1
0*x^2+x-2)^2,x, algorithm="giac")

[Out]

(x^2 - 1)/(x^3*log(1/10*x^2 + x - 2))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 21, normalized size = 0.88




method result size



norman x21ln(110x2+x2)x3 21
risch x21ln(110x2+x2)x3 21



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-x^4-10*x^3+23*x^2+30*x-60)*ln(1/10*x^2+x-2)-2*x^4-10*x^3+2*x^2+10*x)/(x^6+10*x^5-20*x^4)/ln(1/10*x^2+x-
2)^2,x,method=_RETURNVERBOSE)

[Out]

(x^2-1)/ln(1/10*x^2+x-2)/x^3

________________________________________________________________________________________

maxima [A]  time = 0.51, size = 33, normalized size = 1.38 x21x3(log(5)+log(2))x3log(x2+10x20)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^4-10*x^3+23*x^2+30*x-60)*log(1/10*x^2+x-2)-2*x^4-10*x^3+2*x^2+10*x)/(x^6+10*x^5-20*x^4)/log(1/1
0*x^2+x-2)^2,x, algorithm="maxima")

[Out]

-(x^2 - 1)/(x^3*(log(5) + log(2)) - x^3*log(x^2 + 10*x - 20))

________________________________________________________________________________________

mupad [B]  time = 4.42, size = 20, normalized size = 0.83 x21x3ln(x210+x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(x + x^2/10 - 2)*(10*x^3 - 23*x^2 - 30*x + x^4 + 60) - 10*x - 2*x^2 + 10*x^3 + 2*x^4)/(log(x + x^2/10
 - 2)^2*(10*x^5 - 20*x^4 + x^6)),x)

[Out]

(x^2 - 1)/(x^3*log(x + x^2/10 - 2))

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 17, normalized size = 0.71 x21x3log(x210+x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x**4-10*x**3+23*x**2+30*x-60)*ln(1/10*x**2+x-2)-2*x**4-10*x**3+2*x**2+10*x)/(x**6+10*x**5-20*x**4
)/ln(1/10*x**2+x-2)**2,x)

[Out]

(x**2 - 1)/(x**3*log(x**2/10 + x - 2))

________________________________________________________________________________________