Optimal. Leaf size=24 \[ \frac {-\frac {1}{x}+x}{x^2 \log \left (-2+x+\frac {x^2}{10}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x+2 x^2-10 x^3-2 x^4+\left (-60+30 x+23 x^2-10 x^3-x^4\right ) \log \left (\frac {1}{10} \left (-20+10 x+x^2\right )\right )}{\left (-20 x^4+10 x^5+x^6\right ) \log ^2\left (\frac {1}{10} \left (-20+10 x+x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x+2 x^2-10 x^3-2 x^4+\left (-60+30 x+23 x^2-10 x^3-x^4\right ) \log \left (\frac {1}{10} \left (-20+10 x+x^2\right )\right )}{x^4 \left (-20+10 x+x^2\right ) \log ^2\left (\frac {1}{10} \left (-20+10 x+x^2\right )\right )} \, dx\\ &=\int \left (-\frac {2 \left (-5-x+5 x^2+x^3\right )}{x^3 \left (-20+10 x+x^2\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )}+\frac {3-x^2}{x^4 \log \left (-2+x+\frac {x^2}{10}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-5-x+5 x^2+x^3}{x^3 \left (-20+10 x+x^2\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx\right )+\int \frac {3-x^2}{x^4 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx\\ &=-\left (2 \int \left (\frac {1}{4 x^3 \log ^2\left (-2+x+\frac {x^2}{10}\right )}+\frac {7}{40 x^2 \log ^2\left (-2+x+\frac {x^2}{10}\right )}-\frac {3}{20 x \log ^2\left (-2+x+\frac {x^2}{10}\right )}+\frac {3 (31+2 x)}{40 \left (-20+10 x+x^2\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )}\right ) \, dx\right )+\int \left (\frac {3}{x^4 \log \left (-2+x+\frac {x^2}{10}\right )}-\frac {1}{x^2 \log \left (-2+x+\frac {x^2}{10}\right )}\right ) \, dx\\ &=-\left (\frac {3}{20} \int \frac {31+2 x}{\left (-20+10 x+x^2\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx\right )+\frac {3}{10} \int \frac {1}{x \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {7}{20} \int \frac {1}{x^2 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {1}{2} \int \frac {1}{x^3 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx+3 \int \frac {1}{x^4 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx-\int \frac {1}{x^2 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx\\ &=-\left (\frac {3}{20} \int \left (\frac {31}{\left (-20+10 x+x^2\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )}+\frac {2 x}{\left (-20+10 x+x^2\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )}\right ) \, dx\right )+\frac {3}{10} \int \frac {1}{x \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {7}{20} \int \frac {1}{x^2 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {1}{2} \int \frac {1}{x^3 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx+3 \int \frac {1}{x^4 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx-\int \frac {1}{x^2 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx\\ &=\frac {3}{10} \int \frac {1}{x \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {3}{10} \int \frac {x}{\left (-20+10 x+x^2\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {7}{20} \int \frac {1}{x^2 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {1}{2} \int \frac {1}{x^3 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx+3 \int \frac {1}{x^4 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {93}{20} \int \frac {1}{\left (-20+10 x+x^2\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\int \frac {1}{x^2 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx\\ &=-\left (\frac {3}{10} \int \left (\frac {1-\frac {\sqrt {5}}{3}}{\left (10-6 \sqrt {5}+2 x\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )}+\frac {1+\frac {\sqrt {5}}{3}}{\left (10+6 \sqrt {5}+2 x\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )}\right ) \, dx\right )+\frac {3}{10} \int \frac {1}{x \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {7}{20} \int \frac {1}{x^2 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {1}{2} \int \frac {1}{x^3 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx+3 \int \frac {1}{x^4 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {93}{20} \int \left (-\frac {1}{3 \sqrt {5} \left (-10+6 \sqrt {5}-2 x\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )}-\frac {1}{3 \sqrt {5} \left (10+6 \sqrt {5}+2 x\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )}\right ) \, dx-\int \frac {1}{x^2 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx\\ &=\frac {3}{10} \int \frac {1}{x \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {7}{20} \int \frac {1}{x^2 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {1}{2} \int \frac {1}{x^3 \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx+3 \int \frac {1}{x^4 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx+\frac {31 \int \frac {1}{\left (-10+6 \sqrt {5}-2 x\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx}{20 \sqrt {5}}+\frac {31 \int \frac {1}{\left (10+6 \sqrt {5}+2 x\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx}{20 \sqrt {5}}-\frac {1}{10} \left (3-\sqrt {5}\right ) \int \frac {1}{\left (10-6 \sqrt {5}+2 x\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\frac {1}{10} \left (3+\sqrt {5}\right ) \int \frac {1}{\left (10+6 \sqrt {5}+2 x\right ) \log ^2\left (-2+x+\frac {x^2}{10}\right )} \, dx-\int \frac {1}{x^2 \log \left (-2+x+\frac {x^2}{10}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 25, normalized size = 1.04 \begin {gather*} -\frac {1-x^2}{x^3 \log \left (-2+x+\frac {x^2}{10}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 20, normalized size = 0.83 \begin {gather*} \frac {x^{2} - 1}{x^{3} \log \left (\frac {1}{10} \, x^{2} + x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 20, normalized size = 0.83 \begin {gather*} \frac {x^{2} - 1}{x^{3} \log \left (\frac {1}{10} \, x^{2} + x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.88
method | result | size |
norman | \(\frac {x^{2}-1}{\ln \left (\frac {1}{10} x^{2}+x -2\right ) x^{3}}\) | \(21\) |
risch | \(\frac {x^{2}-1}{\ln \left (\frac {1}{10} x^{2}+x -2\right ) x^{3}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 33, normalized size = 1.38 \begin {gather*} -\frac {x^{2} - 1}{x^{3} {\left (\log \relax (5) + \log \relax (2)\right )} - x^{3} \log \left (x^{2} + 10 \, x - 20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.42, size = 20, normalized size = 0.83 \begin {gather*} \frac {x^2-1}{x^3\,\ln \left (\frac {x^2}{10}+x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.71 \begin {gather*} \frac {x^{2} - 1}{x^{3} \log {\left (\frac {x^{2}}{10} + x - 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________