3.69.9 e2x(20+4x)log(13(5+x))+log(3+ex)(12ex4e2x+(e2x(20+4x)+ex(60+12x))log(13(5+x)))(15+ex(5+x)+3x)log2(13(5+x))dx

Optimal. Leaf size=23 5+4exlog(3+ex)log(13(5+x))

________________________________________________________________________________________

Rubi [F]  time = 3.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e2x(20+4x)log(13(5+x))+log(3+ex)(12ex4e2x+(e2x(20+4x)+ex(60+12x))log(13(5+x)))(15+ex(5+x)+3x)log2(13(5+x))dx

Verification is not applicable to the result.

[In]

Int[(E^(2*x)*(-20 + 4*x)*Log[(-5 + x)/3] + Log[3 + E^x]*(-12*E^x - 4*E^(2*x) + (E^(2*x)*(-20 + 4*x) + E^x*(-60
 + 12*x))*Log[(-5 + x)/3]))/((-15 + E^x*(-5 + x) + 3*x)*Log[(-5 + x)/3]^2),x]

[Out]

4*Log[27]*Defer[Int][E^x/((3 + E^x)*Log[-5/3 + x/3]^2), x] + 4*Defer[Int][(E^x*Log[3 + E^x])/((5 - x)*Log[-5/3
 + x/3]^2), x] + 4*Defer[Int][E^x/Log[-5/3 + x/3], x] + 4*Defer[Int][(E^x*Log[3 + E^x])/Log[-5/3 + x/3], x] +
12*Defer[Int][(E^x*Log[-5 + x])/((-3 - E^x)*Log[-5/3 + x/3]^2), x]

Rubi steps

integral=4ex(exlog(13(5+x))3+ex+log(3+ex)(1+(5+x)log(13(5+x)))5+x)log2(53+x3)dx=4ex(exlog(13(5+x))3+ex+log(3+ex)(1+(5+x)log(13(5+x)))5+x)log2(53+x3)dx=4(ex(log(3+ex)+5log(13(5+x))xlog(13(5+x))+5log(3+ex)log(13(5+x))xlog(3+ex)log(13(5+x)))(5x)log2(53+x3)+ex(log(27)3log(5+x))(3+ex)log2(53+x3))dx=4ex(log(3+ex)+5log(13(5+x))xlog(13(5+x))+5log(3+ex)log(13(5+x))xlog(3+ex)log(13(5+x)))(5x)log2(53+x3)dx+4ex(log(27)3log(5+x))(3+ex)log2(53+x3)dx=4ex(((5+x)log(13(5+x)))log(3+ex)(1+(5+x)log(13(5+x))))(5x)log2(53+x3)dx+4(exlog(27)(3+ex)log2(53+x3)+3exlog(5+x)(3ex)log2(53+x3))dx=4(exlog(3+ex)(5x)log2(53+x3)+ex(1+log(3+ex))log(53+x3))dx+12exlog(5+x)(3ex)log2(53+x3)dx+(4log(27))ex(3+ex)log2(53+x3)dx=4exlog(3+ex)(5x)log2(53+x3)dx+4ex(1+log(3+ex))log(53+x3)dx+12exlog(5+x)(3ex)log2(53+x3)dx+(4log(27))ex(3+ex)log2(53+x3)dx=4(exlog(53+x3)+exlog(3+ex)log(53+x3))dx+4exlog(3+ex)(5x)log2(53+x3)dx+12exlog(5+x)(3ex)log2(53+x3)dx+(4log(27))ex(3+ex)log2(53+x3)dx=4exlog(3+ex)(5x)log2(53+x3)dx+4exlog(53+x3)dx+4exlog(3+ex)log(53+x3)dx+12exlog(5+x)(3ex)log2(53+x3)dx+(4log(27))ex(3+ex)log2(53+x3)dx

________________________________________________________________________________________

Mathematica [A]  time = 1.56, size = 21, normalized size = 0.91 4exlog(3+ex)log(13(5+x))

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*x)*(-20 + 4*x)*Log[(-5 + x)/3] + Log[3 + E^x]*(-12*E^x - 4*E^(2*x) + (E^(2*x)*(-20 + 4*x) + E^
x*(-60 + 12*x))*Log[(-5 + x)/3]))/((-15 + E^x*(-5 + x) + 3*x)*Log[(-5 + x)/3]^2),x]

[Out]

(4*E^x*Log[3 + E^x])/Log[(-5 + x)/3]

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 17, normalized size = 0.74 4exlog(ex+3)log(13x53)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4*x-20)*exp(x)^2+(12*x-60)*exp(x))*log(1/3*x-5/3)-4*exp(x)^2-12*exp(x))*log(3+exp(x))+(4*x-20)*e
xp(x)^2*log(1/3*x-5/3))/((x-5)*exp(x)+3*x-15)/log(1/3*x-5/3)^2,x, algorithm="fricas")

[Out]

4*e^x*log(e^x + 3)/log(1/3*x - 5/3)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 20, normalized size = 0.87 4exlog(ex+3)log(3)log(x5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4*x-20)*exp(x)^2+(12*x-60)*exp(x))*log(1/3*x-5/3)-4*exp(x)^2-12*exp(x))*log(3+exp(x))+(4*x-20)*e
xp(x)^2*log(1/3*x-5/3))/((x-5)*exp(x)+3*x-15)/log(1/3*x-5/3)^2,x, algorithm="giac")

[Out]

-4*e^x*log(e^x + 3)/(log(3) - log(x - 5))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 18, normalized size = 0.78




method result size



risch 4ln(3+ex)exln(x353) 18



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((4*x-20)*exp(x)^2+(12*x-60)*exp(x))*ln(1/3*x-5/3)-4*exp(x)^2-12*exp(x))*ln(3+exp(x))+(4*x-20)*exp(x)^2*
ln(1/3*x-5/3))/((x-5)*exp(x)+3*x-15)/ln(1/3*x-5/3)^2,x,method=_RETURNVERBOSE)

[Out]

4*ln(3+exp(x))/ln(1/3*x-5/3)*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 20, normalized size = 0.87 4exlog(ex+3)log(3)log(x5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4*x-20)*exp(x)^2+(12*x-60)*exp(x))*log(1/3*x-5/3)-4*exp(x)^2-12*exp(x))*log(3+exp(x))+(4*x-20)*e
xp(x)^2*log(1/3*x-5/3))/((x-5)*exp(x)+3*x-15)/log(1/3*x-5/3)^2,x, algorithm="maxima")

[Out]

-4*e^x*log(e^x + 3)/(log(3) - log(x - 5))

________________________________________________________________________________________

mupad [B]  time = 0.27, size = 17, normalized size = 0.74 4exln(ex+3)ln(x353)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(exp(x) + 3)*(4*exp(2*x) + 12*exp(x) - log(x/3 - 5/3)*(exp(x)*(12*x - 60) + exp(2*x)*(4*x - 20))) - e
xp(2*x)*log(x/3 - 5/3)*(4*x - 20))/(log(x/3 - 5/3)^2*(3*x + exp(x)*(x - 5) - 15)),x)

[Out]

(4*exp(x)*log(exp(x) + 3))/log(x/3 - 5/3)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4*x-20)*exp(x)**2+(12*x-60)*exp(x))*ln(1/3*x-5/3)-4*exp(x)**2-12*exp(x))*ln(3+exp(x))+(4*x-20)*e
xp(x)**2*ln(1/3*x-5/3))/((x-5)*exp(x)+3*x-15)/ln(1/3*x-5/3)**2,x)

[Out]

Timed out

________________________________________________________________________________________