Optimal. Leaf size=23 \[ x+\log \left (5+x+\log \left (-e^4+x+\frac {x}{4+5 x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.07, antiderivative size = 26, normalized size of antiderivative = 1.13, number of steps used = 4, number of rules used = 3, integrand size = 192, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {6688, 6728, 6684} \begin {gather*} x+\log \left (x+\log \left (\frac {5 x (x+1)}{5 x+4}-e^4\right )+5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 (6+x) (4+5 x)^2-5 \left (4+32 x+63 x^2+39 x^3+5 x^4\right )+\left (e^4 (4+5 x)^2-5 x \left (4+9 x+5 x^2\right )\right ) \log \left (-e^4+\frac {5 x (1+x)}{4+5 x}\right )}{(4+5 x) \left (4 e^4-5 \left (1-e^4\right ) x-5 x^2\right ) \left (5+x+\log \left (-e^4+\frac {5 x (1+x)}{4+5 x}\right )\right )} \, dx\\ &=\int \left (1+\frac {-4 \left (5-4 e^4\right )-20 \left (3-2 e^4\right ) x-5 \left (14-5 e^4\right ) x^2-25 x^3}{(4+5 x) \left (4 e^4-5 \left (1-e^4\right ) x-5 x^2\right ) \left (5+x+\log \left (-e^4+\frac {5 x (1+x)}{4+5 x}\right )\right )}\right ) \, dx\\ &=x+\int \frac {-4 \left (5-4 e^4\right )-20 \left (3-2 e^4\right ) x-5 \left (14-5 e^4\right ) x^2-25 x^3}{(4+5 x) \left (4 e^4-5 \left (1-e^4\right ) x-5 x^2\right ) \left (5+x+\log \left (-e^4+\frac {5 x (1+x)}{4+5 x}\right )\right )} \, dx\\ &=x+\log \left (5+x+\log \left (-e^4+\frac {5 x (1+x)}{4+5 x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 26, normalized size = 1.13 \begin {gather*} x+\log \left (5+x+\log \left (-e^4+\frac {5 x (1+x)}{4+5 x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 33, normalized size = 1.43 \begin {gather*} x + \log \left (x + \log \left (\frac {5 \, x^{2} - {\left (5 \, x + 4\right )} e^{4} + 5 \, x}{5 \, x + 4}\right ) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 33, normalized size = 1.43 \begin {gather*} x + \log \left (x + \log \left (\frac {5 \, x^{2} - 5 \, x e^{4} + 5 \, x - 4 \, e^{4}}{5 \, x + 4}\right ) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 33, normalized size = 1.43
method | result | size |
norman | \(x +\ln \left (x +\ln \left (\frac {\left (-5 x -4\right ) {\mathrm e}^{4}+5 x^{2}+5 x}{4+5 x}\right )+5\right )\) | \(33\) |
risch | \(x +\ln \left (x +\ln \left (\frac {\left (-5 x -4\right ) {\mathrm e}^{4}+5 x^{2}+5 x}{4+5 x}\right )+5\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 32, normalized size = 1.39 \begin {gather*} x + \log \left (x + \log \left (5 \, x^{2} - 5 \, x {\left (e^{4} - 1\right )} - 4 \, e^{4}\right ) - \log \left (5 \, x + 4\right ) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.70, size = 31, normalized size = 1.35 \begin {gather*} x + \log {\left (x + \log {\left (\frac {5 x^{2} + 5 x + \left (- 5 x - 4\right ) e^{4}}{5 x + 4} \right )} + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________