3.69.37 11296x2+2x3+16x4x2+x4dx

Optimal. Leaf size=22 log(e16(7+x)(x+x2)x2(1+x2))

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 15, normalized size of antiderivative = 0.68, number of steps used = 4, number of rules used = 3, integrand size = 27, number of rulesintegrand size = 0.111, Rules used = {1593, 1802, 260} log(x2+1)+16x+112x

Antiderivative was successfully verified.

[In]

Int[(-112 - 96*x^2 + 2*x^3 + 16*x^4)/(x^2 + x^4),x]

[Out]

112/x + 16*x + Log[1 + x^2]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1802

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*Pq*(a + b*x
^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rubi steps

integral=11296x2+2x3+16x4x2(1+x2)dx=(16112x2+2x1+x2)dx=112x+16x+2x1+x2dx=112x+16x+log(1+x2)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 21, normalized size = 0.95 2(56x+8x+12log(1+x2))

Antiderivative was successfully verified.

[In]

Integrate[(-112 - 96*x^2 + 2*x^3 + 16*x^4)/(x^2 + x^4),x]

[Out]

2*(56/x + 8*x + Log[1 + x^2]/2)

________________________________________________________________________________________

fricas [A]  time = 1.02, size = 19, normalized size = 0.86 16x2+xlog(x2+1)+112x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((16*x^4+2*x^3-96*x^2-112)/(x^4+x^2),x, algorithm="fricas")

[Out]

(16*x^2 + x*log(x^2 + 1) + 112)/x

________________________________________________________________________________________

giac [A]  time = 0.15, size = 15, normalized size = 0.68 16x+112x+log(x2+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((16*x^4+2*x^3-96*x^2-112)/(x^4+x^2),x, algorithm="giac")

[Out]

16*x + 112/x + log(x^2 + 1)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 16, normalized size = 0.73




method result size



default 16x+ln(x2+1)+112x 16
meijerg 16x+ln(x2+1)+112x 16
risch 16x+ln(x2+1)+112x 16
norman 16x2+112x+ln(x2+1) 19



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((16*x^4+2*x^3-96*x^2-112)/(x^4+x^2),x,method=_RETURNVERBOSE)

[Out]

16*x+ln(x^2+1)+112/x

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 15, normalized size = 0.68 16x+112x+log(x2+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((16*x^4+2*x^3-96*x^2-112)/(x^4+x^2),x, algorithm="maxima")

[Out]

16*x + 112/x + log(x^2 + 1)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 15, normalized size = 0.68 16x+ln(x2+1)+112x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(96*x^2 - 2*x^3 - 16*x^4 + 112)/(x^2 + x^4),x)

[Out]

16*x + log(x^2 + 1) + 112/x

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 12, normalized size = 0.55 16x+log(x2+1)+112x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((16*x**4+2*x**3-96*x**2-112)/(x**4+x**2),x)

[Out]

16*x + log(x**2 + 1) + 112/x

________________________________________________________________________________________