3.69.66 e1+e34+exx(ex(1e3)log(4)+(1+e3)log(4))32+2e2x+ex(164x)16x+2x2dx

Optimal. Leaf size=24 12e1+e34+exxlog(4)

________________________________________________________________________________________

Rubi [A]  time = 1.06, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 69, number of rulesintegrand size = 0.043, Rules used = {6688, 12, 6706} 12e1+e3x+ex+4log(4)

Antiderivative was successfully verified.

[In]

Int[(E^((1 + E^3)/(4 + E^x - x))*(E^x*(-1 - E^3)*Log[4] + (1 + E^3)*Log[4]))/(32 + 2*E^(2*x) + E^x*(16 - 4*x)
- 16*x + 2*x^2),x]

[Out]

(E^((1 + E^3)/(4 + E^x - x))*Log[4])/2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=e1+e34+exx(1+e3)(1ex)log(4)2(4+exx)2dx=12((1+e3)log(4))e1+e34+exx(1ex)(4+exx)2dx=12e1+e34+exxlog(4)

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 24, normalized size = 1.00 12e1+e34+exxlog(4)

Antiderivative was successfully verified.

[In]

Integrate[(E^((1 + E^3)/(4 + E^x - x))*(E^x*(-1 - E^3)*Log[4] + (1 + E^3)*Log[4]))/(32 + 2*E^(2*x) + E^x*(16 -
 4*x) - 16*x + 2*x^2),x]

[Out]

(E^((1 + E^3)/(4 + E^x - x))*Log[4])/2

________________________________________________________________________________________

fricas [A]  time = 0.71, size = 19, normalized size = 0.79 e(e3+1xex4)log(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(-exp(3)-1)*log(2)*exp(x)+2*(exp(3)+1)*log(2))*exp((exp(3)+1)/(exp(x)-x+4))/(2*exp(x)^2+(-4*x+16)
*exp(x)+2*x^2-16*x+32),x, algorithm="fricas")

[Out]

e^(-(e^3 + 1)/(x - e^x - 4))*log(2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 ((e3+1)exlog(2)(e3+1)log(2))e(e3+1xex4)x22(x4)ex8x+e(2x)+16dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(-exp(3)-1)*log(2)*exp(x)+2*(exp(3)+1)*log(2))*exp((exp(3)+1)/(exp(x)-x+4))/(2*exp(x)^2+(-4*x+16)
*exp(x)+2*x^2-16*x+32),x, algorithm="giac")

[Out]

integrate(-((e^3 + 1)*e^x*log(2) - (e^3 + 1)*log(2))*e^(-(e^3 + 1)/(x - e^x - 4))/(x^2 - 2*(x - 4)*e^x - 8*x +
 e^(2*x) + 16), x)

________________________________________________________________________________________

maple [A]  time = 0.17, size = 19, normalized size = 0.79




method result size



risch ln(2)ee3+1exx+4 19
norman xln(2)ee3+1exx+44ln(2)ee3+1exx+4exln(2)ee3+1exx+4xex4 71



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*(-exp(3)-1)*ln(2)*exp(x)+2*(exp(3)+1)*ln(2))*exp((exp(3)+1)/(exp(x)-x+4))/(2*exp(x)^2+(-4*x+16)*exp(x)+
2*x^2-16*x+32),x,method=_RETURNVERBOSE)

[Out]

ln(2)*exp((exp(3)+1)/(exp(x)-x+4))

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 29, normalized size = 1.21 e(e3xex41xex4)log(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(-exp(3)-1)*log(2)*exp(x)+2*(exp(3)+1)*log(2))*exp((exp(3)+1)/(exp(x)-x+4))/(2*exp(x)^2+(-4*x+16)
*exp(x)+2*x^2-16*x+32),x, algorithm="maxima")

[Out]

e^(-e^3/(x - e^x - 4) - 1/(x - e^x - 4))*log(2)

________________________________________________________________________________________

mupad [B]  time = 4.42, size = 18, normalized size = 0.75 ee3+1exx+4ln(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((exp(3) + 1)/(exp(x) - x + 4))*(2*log(2)*(exp(3) + 1) - 2*exp(x)*log(2)*(exp(3) + 1)))/(2*exp(2*x) -
16*x - exp(x)*(4*x - 16) + 2*x^2 + 32),x)

[Out]

exp((exp(3) + 1)/(exp(x) - x + 4))*log(2)

________________________________________________________________________________________

sympy [A]  time = 0.37, size = 15, normalized size = 0.62 e1+e3x+ex+4log(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(-exp(3)-1)*ln(2)*exp(x)+2*(exp(3)+1)*ln(2))*exp((exp(3)+1)/(exp(x)-x+4))/(2*exp(x)**2+(-4*x+16)*
exp(x)+2*x**2-16*x+32),x)

[Out]

exp((1 + exp(3))/(-x + exp(x) + 4))*log(2)

________________________________________________________________________________________