Optimal. Leaf size=18 \[ \left (-3-e^{e^{5+x}}-\frac {x}{4}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 36, normalized size of antiderivative = 2.00, number of steps used = 5, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {12, 2282, 2194, 2288} \begin {gather*} \frac {x^2}{16}+\frac {3 x}{2}+e^{2 e^{x+5}}+\frac {1}{2} e^{e^{x+5}} (x+12) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \left (12+16 e^{5+2 e^{5+x}+x}+x+e^{e^{5+x}} \left (4+e^{5+x} (48+4 x)\right )\right ) \, dx\\ &=\frac {3 x}{2}+\frac {x^2}{16}+\frac {1}{8} \int e^{e^{5+x}} \left (4+e^{5+x} (48+4 x)\right ) \, dx+2 \int e^{5+2 e^{5+x}+x} \, dx\\ &=\frac {3 x}{2}+\frac {x^2}{16}+\frac {1}{2} e^{e^{5+x}} (12+x)+2 \operatorname {Subst}\left (\int e^{5+2 e^5 x} \, dx,x,e^x\right )\\ &=e^{2 e^{5+x}}+\frac {3 x}{2}+\frac {x^2}{16}+\frac {1}{2} e^{e^{5+x}} (12+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 1.00 \begin {gather*} \frac {1}{16} \left (12+4 e^{e^{5+x}}+x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 26, normalized size = 1.44 \begin {gather*} \frac {1}{16} \, x^{2} + \frac {1}{2} \, {\left (x + 12\right )} e^{\left (e^{\left (x + 5\right )}\right )} + \frac {3}{2} \, x + e^{\left (2 \, e^{\left (x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 45, normalized size = 2.50 \begin {gather*} \frac {1}{16} \, x^{2} + \frac {1}{2} \, {\left (x e^{\left (x + e^{\left (x + 5\right )} + 5\right )} + 12 \, e^{\left (x + e^{\left (x + 5\right )} + 5\right )}\right )} e^{\left (-x - 5\right )} + \frac {3}{2} \, x + e^{\left (2 \, e^{\left (x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 29, normalized size = 1.61
method | result | size |
risch | \({\mathrm e}^{2 \,{\mathrm e}^{5+x}}+\frac {\left (4 x +48\right ) {\mathrm e}^{{\mathrm e}^{5+x}}}{8}+\frac {x^{2}}{16}+\frac {3 x}{2}\) | \(29\) |
default | \(\frac {3 x}{2}+\frac {x^{2}}{16}+\frac {x \,{\mathrm e}^{{\mathrm e}^{5+x}}}{2}+6 \,{\mathrm e}^{{\mathrm e}^{5+x}}+{\mathrm e}^{2 \,{\mathrm e}^{5+x}}\) | \(32\) |
norman | \(\frac {3 x}{2}+\frac {x^{2}}{16}+\frac {x \,{\mathrm e}^{{\mathrm e}^{5+x}}}{2}+6 \,{\mathrm e}^{{\mathrm e}^{5+x}}+{\mathrm e}^{2 \,{\mathrm e}^{5+x}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 26, normalized size = 1.44 \begin {gather*} \frac {1}{16} \, x^{2} + \frac {1}{2} \, {\left (x + 12\right )} e^{\left (e^{\left (x + 5\right )}\right )} + \frac {3}{2} \, x + e^{\left (2 \, e^{\left (x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 33, normalized size = 1.83 \begin {gather*} \frac {3\,x}{2}+6\,{\mathrm {e}}^{{\mathrm {e}}^5\,{\mathrm {e}}^x}+{\mathrm {e}}^{2\,{\mathrm {e}}^5\,{\mathrm {e}}^x}+\frac {x^2}{16}+\frac {x\,{\mathrm {e}}^{{\mathrm {e}}^5\,{\mathrm {e}}^x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 29, normalized size = 1.61 \begin {gather*} \frac {x^{2}}{16} + \frac {3 x}{2} + \frac {\left (x + 12\right ) e^{e^{x + 5}}}{2} + e^{2 e^{x + 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________