3.69.68 105log(log(6))xlog2(x)dx

Optimal. Leaf size=11 5(2+log(log(6)))log(x)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 13, normalized size of antiderivative = 1.18, number of steps used = 3, number of rules used = 3, integrand size = 15, number of rulesintegrand size = 0.200, Rules used = {12, 2302, 30} 5(2log(log(6)))log(x)

Antiderivative was successfully verified.

[In]

Int[(10 - 5*Log[Log[6]])/(x*Log[x]^2),x]

[Out]

(-5*(2 - Log[Log[6]]))/Log[x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rubi steps

integral=(5(2log(log(6))))1xlog2(x)dx=(5(2log(log(6))))Subst(1x2dx,x,log(x))=5(2log(log(6)))log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 16, normalized size = 1.45 10log(x)+5log(log(6))log(x)

Antiderivative was successfully verified.

[In]

Integrate[(10 - 5*Log[Log[6]])/(x*Log[x]^2),x]

[Out]

-10/Log[x] + (5*Log[Log[6]])/Log[x]

________________________________________________________________________________________

fricas [A]  time = 1.44, size = 11, normalized size = 1.00 5(log(log(6))2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-5*log(log(6))+10)/x/log(x)^2,x, algorithm="fricas")

[Out]

5*(log(log(6)) - 2)/log(x)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 11, normalized size = 1.00 5(log(log(6))2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-5*log(log(6))+10)/x/log(x)^2,x, algorithm="giac")

[Out]

5*(log(log(6)) - 2)/log(x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 13, normalized size = 1.18




method result size



norman 5ln(ln(6))10ln(x) 13
derivativedivides 5ln(ln(6))+10ln(x) 14
default 5ln(ln(6))+10ln(x) 14
risch 5ln(ln(2)+ln(3))ln(x)10ln(x) 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-5*ln(ln(6))+10)/x/ln(x)^2,x,method=_RETURNVERBOSE)

[Out]

(5*ln(ln(6))-10)/ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 11, normalized size = 1.00 5(log(log(6))2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-5*log(log(6))+10)/x/log(x)^2,x, algorithm="maxima")

[Out]

5*(log(log(6)) - 2)/log(x)

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 12, normalized size = 1.09 5ln(ln(6))10ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(5*log(log(6)) - 10)/(x*log(x)^2),x)

[Out]

(5*log(log(6)) - 10)/log(x)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 10, normalized size = 0.91 10+5log(log(6))log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-5*ln(ln(6))+10)/x/ln(x)**2,x)

[Out]

(-10 + 5*log(log(6)))/log(x)

________________________________________________________________________________________