3.69.69
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [F] time = 2.92, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^5*(-10 - 2*x + 10*x^2 + 2*x^3) + E^10*(10 - 8*x - 2*x^2)*Log[5 + x]^2 + Log[(3*E^x)/x]*(E^5*(-10*x - 2*
x^2) + 4*E^10*x*Log[5 + x]))/(5*x + 11*x^2 + 7*x^3 + x^4 + E^5*(-10*x - 12*x^2 - 2*x^3)*Log[5 + x]^2 + E^10*(5
*x + x^2)*Log[5 + x]^4),x]
[Out]
-2*E^5*Defer[Int][Log[(3*E^x)/x]/(1 + x - E^5*Log[5 + x]^2)^2, x] + 4*E^10*Defer[Int][(Log[(3*E^x)/x]*Log[5 +
x])/((5 + x)*(1 + x - E^5*Log[5 + x]^2)^2), x] + 2*E^5*Defer[Int][(1 + x - E^5*Log[5 + x]^2)^(-1), x] - 2*E^5*
Defer[Int][1/(x*(1 + x - E^5*Log[5 + x]^2)), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.86, size = 31, normalized size = 1.07
Antiderivative was successfully verified.
[In]
Integrate[(E^5*(-10 - 2*x + 10*x^2 + 2*x^3) + E^10*(10 - 8*x - 2*x^2)*Log[5 + x]^2 + Log[(3*E^x)/x]*(E^5*(-10*
x - 2*x^2) + 4*E^10*x*Log[5 + x]))/(5*x + 11*x^2 + 7*x^3 + x^4 + E^5*(-10*x - 12*x^2 - 2*x^3)*Log[5 + x]^2 + E
^10*(5*x + x^2)*Log[5 + x]^4),x]
[Out]
(-2*E^5*Log[(3*E^x)/x])/(-1 - x + E^5*Log[5 + x]^2)
________________________________________________________________________________________
fricas [A] time = 0.84, size = 30, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x*exp(5)^2*log(5+x)+(-2*x^2-10*x)*exp(5))*log(exp(log(3)+x)/x)+(-2*x^2-8*x+10)*exp(5)^2*log(5+x)
^2+(2*x^3+10*x^2-2*x-10)*exp(5))/((x^2+5*x)*exp(5)^2*log(5+x)^4+(-2*x^3-12*x^2-10*x)*exp(5)*log(5+x)^2+x^4+7*x
^3+11*x^2+5*x),x, algorithm="fricas")
[Out]
-2*e^5*log(e^(x + log(3))/x)/(e^5*log(x + 5)^2 - x - 1)
________________________________________________________________________________________
giac [A] time = 0.80, size = 34, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x*exp(5)^2*log(5+x)+(-2*x^2-10*x)*exp(5))*log(exp(log(3)+x)/x)+(-2*x^2-8*x+10)*exp(5)^2*log(5+x)
^2+(2*x^3+10*x^2-2*x-10)*exp(5))/((x^2+5*x)*exp(5)^2*log(5+x)^4+(-2*x^3-12*x^2-10*x)*exp(5)*log(5+x)^2+x^4+7*x
^3+11*x^2+5*x),x, algorithm="giac")
[Out]
-4*(x*e^5 + e^5*log(3) - e^5*log(x))/(e^5*log(x + 5)^2 - x - 1)
________________________________________________________________________________________
maple [C] time = 2.36, size = 135, normalized size = 4.66
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x*exp(5)^2*ln(5+x)+(-2*x^2-10*x)*exp(5))*ln(exp(ln(3)+x)/x)+(-2*x^2-8*x+10)*exp(5)^2*ln(5+x)^2+(2*x^3+
10*x^2-2*x-10)*exp(5))/((x^2+5*x)*exp(5)^2*ln(5+x)^4+(-2*x^3-12*x^2-10*x)*exp(5)*ln(5+x)^2+x^4+7*x^3+11*x^2+5*
x),x,method=_RETURNVERBOSE)
[Out]
-2*exp(5)/(exp(5)*ln(5+x)^2-x-1)*ln(3*exp(x))+exp(5)*(I*Pi*csgn(I/x)*csgn(I*exp(x))*csgn(I/x*exp(x))-I*Pi*csgn
(I/x)*csgn(I/x*exp(x))^2-I*Pi*csgn(I*exp(x))*csgn(I/x*exp(x))^2+I*Pi*csgn(I/x*exp(x))^3+2*ln(x))/(exp(5)*ln(5+
x)^2-x-1)
________________________________________________________________________________________
maxima [A] time = 0.50, size = 34, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x*exp(5)^2*log(5+x)+(-2*x^2-10*x)*exp(5))*log(exp(log(3)+x)/x)+(-2*x^2-8*x+10)*exp(5)^2*log(5+x)
^2+(2*x^3+10*x^2-2*x-10)*exp(5))/((x^2+5*x)*exp(5)^2*log(5+x)^4+(-2*x^3-12*x^2-10*x)*exp(5)*log(5+x)^2+x^4+7*x
^3+11*x^2+5*x),x, algorithm="maxima")
[Out]
-2*(x*e^5 + e^5*log(3) - e^5*log(x))/(e^5*log(x + 5)^2 - x - 1)
________________________________________________________________________________________
mupad [B] time = 4.62, size = 27, normalized size = 0.93
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(5)*(2*x - 10*x^2 - 2*x^3 + 10) + log(exp(x + log(3))/x)*(exp(5)*(10*x + 2*x^2) - 4*x*log(x + 5)*exp(
10)) + log(x + 5)^2*exp(10)*(8*x + 2*x^2 - 10))/(5*x + 11*x^2 + 7*x^3 + x^4 - log(x + 5)^2*exp(5)*(10*x + 12*x
^2 + 2*x^3) + log(x + 5)^4*exp(10)*(5*x + x^2)),x)
[Out]
(2*exp(5)*log((3*exp(x))/x))/(x - log(x + 5)^2*exp(5) + 1)
________________________________________________________________________________________
sympy [A] time = 0.64, size = 26, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x*exp(5)**2*ln(5+x)+(-2*x**2-10*x)*exp(5))*ln(exp(ln(3)+x)/x)+(-2*x**2-8*x+10)*exp(5)**2*ln(5+x)
**2+(2*x**3+10*x**2-2*x-10)*exp(5))/((x**2+5*x)*exp(5)**2*ln(5+x)**4+(-2*x**3-12*x**2-10*x)*exp(5)*ln(5+x)**2+
x**4+7*x**3+11*x**2+5*x),x)
[Out]
2*exp(5)*log(3*exp(x)/x)/(x - exp(5)*log(x + 5)**2 + 1)
________________________________________________________________________________________