3.69.70
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [A] time = 1.00, antiderivative size = 30, normalized size of antiderivative = 1.07,
number of steps used = 37, number of rules used = 15, integrand size = 125, = 0.120, Rules used
= {6688, 2523, 1657, 634, 618, 206, 628, 6728, 2357, 2295, 2317, 2391, 2316, 2315, 2556}
Antiderivative was successfully verified.
[In]
Int[(E^2*(-1 - 2*x) + 6*x + 14*x^2 + 4*x^3 + (E^2 - 6*x - 2*x^2)*Log[(-E^2 + 6*x + 2*x^2)/(2*x)] + Log[x]*(-3*
E^2 + 12*x + 2*x^2 + (E^2 - 6*x - 2*x^2)*Log[(-E^2 + 6*x + 2*x^2)/(2*x)]))/(E^2 - 6*x - 2*x^2),x]
[Out]
x - x^2 - 2*x*Log[x] + x*Log[x]*Log[3 - E^2/(2*x) + x]
Rule 206
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])
Rule 618
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]
Rule 628
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
Rule 634
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] && !NiceSqrtQ[b^2 - 4*a*c]
Rule 1657
Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x + c*x^2)^p, x
], x] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && IGtQ[p, -2]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2315
Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]
Rule 2316
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[((a + b*Log[-((c*d)/e)])*Log[d + e*
x])/e, x] + Dist[b, Int[Log[-((e*x)/d)]/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[-((c*d)/e), 0]
Rule 2317
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(Log[1 + (e*x)/d]*(a +
b*Log[c*x^n])^p)/e, x] - Dist[(b*n*p)/e, Int[(Log[1 + (e*x)/d]*(a + b*Log[c*x^n])^(p - 1))/x, x], x] /; FreeQ[
{a, b, c, d, e, n}, x] && IGtQ[p, 0]
Rule 2357
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
Rule 2391
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
e, n}, x] && EqQ[c*d, 1]
Rule 2523
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*Log[c*RFx^p])^n, x] - Dist[b*n*p
, Int[SimplifyIntegrand[(x*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, p}, x] &
& RationalFunctionQ[RFx, x] && IGtQ[n, 0]
Rule 2556
Int[Log[v_]*Log[w_], x_Symbol] :> Simp[x*Log[v]*Log[w], x] + (-Int[SimplifyIntegrand[(x*Log[w]*D[v, x])/v, x],
x] - Int[SimplifyIntegrand[(x*Log[v]*D[w, x])/w, x], x]) /; InverseFunctionFreeQ[v, x] && InverseFunctionFree
Q[w, x]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6728
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 26, normalized size = 0.93
Antiderivative was successfully verified.
[In]
Integrate[(E^2*(-1 - 2*x) + 6*x + 14*x^2 + 4*x^3 + (E^2 - 6*x - 2*x^2)*Log[(-E^2 + 6*x + 2*x^2)/(2*x)] + Log[x
]*(-3*E^2 + 12*x + 2*x^2 + (E^2 - 6*x - 2*x^2)*Log[(-E^2 + 6*x + 2*x^2)/(2*x)]))/(E^2 - 6*x - 2*x^2),x]
[Out]
x*(1 - x + Log[x]*(-2 + Log[3 - E^2/(2*x) + x]))
________________________________________________________________________________________
fricas [A] time = 1.15, size = 35, normalized size = 1.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((exp(2)-2*x^2-6*x)*log(1/2*(-exp(2)+2*x^2+6*x)/x)-3*exp(2)+2*x^2+12*x)*log(x)+(exp(2)-2*x^2-6*x)*l
og(1/2*(-exp(2)+2*x^2+6*x)/x)+(-2*x-1)*exp(2)+4*x^3+14*x^2+6*x)/(exp(2)-2*x^2-6*x),x, algorithm="fricas")
[Out]
-x^2 + (x*log(1/2*(2*x^2 + 6*x - e^2)/x) - 2*x)*log(x) + x
________________________________________________________________________________________
giac [A] time = 0.28, size = 44, normalized size = 1.57
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((exp(2)-2*x^2-6*x)*log(1/2*(-exp(2)+2*x^2+6*x)/x)-3*exp(2)+2*x^2+12*x)*log(x)+(exp(2)-2*x^2-6*x)*l
og(1/2*(-exp(2)+2*x^2+6*x)/x)+(-2*x-1)*exp(2)+4*x^3+14*x^2+6*x)/(exp(2)-2*x^2-6*x),x, algorithm="giac")
[Out]
-x*log(2)*log(x) + x*log(2*x^2 + 6*x - e^2)*log(x) - x*log(x)^2 - x^2 - 2*x*log(x) + x
________________________________________________________________________________________
maple [C] time = 0.31, size = 227, normalized size = 8.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((exp(2)-2*x^2-6*x)*ln(1/2*(-exp(2)+2*x^2+6*x)/x)-3*exp(2)+2*x^2+12*x)*ln(x)+(exp(2)-2*x^2-6*x)*ln(1/2*(-
exp(2)+2*x^2+6*x)/x)+(-2*x-1)*exp(2)+4*x^3+14*x^2+6*x)/(exp(2)-2*x^2-6*x),x,method=_RETURNVERBOSE)
[Out]
ln(x)*x*ln(exp(2)-2*x^2-6*x)-x*ln(x)^2-1/2*I*ln(x)*Pi*x*csgn(I/x)*csgn(I*(exp(2)-2*x^2-6*x))*csgn(I/x*(exp(2)-
2*x^2-6*x))+1/2*I*ln(x)*Pi*x*csgn(I/x)*csgn(I/x*(exp(2)-2*x^2-6*x))^2-I*ln(x)*Pi*x*csgn(I/x*(exp(2)-2*x^2-6*x)
)^2+1/2*I*ln(x)*Pi*x*csgn(I*(exp(2)-2*x^2-6*x))*csgn(I/x*(exp(2)-2*x^2-6*x))^2+1/2*I*ln(x)*Pi*x*csgn(I/x*(exp(
2)-2*x^2-6*x))^3+I*Pi*x*ln(x)-x*ln(2)*ln(x)-2*x*ln(x)-x^2+x
________________________________________________________________________________________
maxima [B] time = 0.52, size = 318, normalized size = 11.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((exp(2)-2*x^2-6*x)*log(1/2*(-exp(2)+2*x^2+6*x)/x)-3*exp(2)+2*x^2+12*x)*log(x)+(exp(2)-2*x^2-6*x)*l
og(1/2*(-exp(2)+2*x^2+6*x)/x)+(-2*x-1)*exp(2)+4*x^3+14*x^2+6*x)/(exp(2)-2*x^2-6*x),x, algorithm="maxima")
[Out]
-x*(log(2) + 2)*log(x) + x*log(2*x^2 + 6*x - e^2)*log(x) - x*log(x)^2 - x^2 - 1/2*(3*log((2*x - sqrt(2*e^2 + 9
) + 3)/(2*x + sqrt(2*e^2 + 9) + 3))/sqrt(2*e^2 + 9) - log(2*x^2 + 6*x - e^2))*e^2 - 1/2*(e^2 + 18)*log(2*x^2 +
6*x - e^2) - 7/2*(e^2 + 9)*log((2*x - sqrt(2*e^2 + 9) + 3)/(2*x + sqrt(2*e^2 + 9) + 3))/sqrt(2*e^2 + 9) + 9/2
*(e^2 + 6)*log((2*x - sqrt(2*e^2 + 9) + 3)/(2*x + sqrt(2*e^2 + 9) + 3))/sqrt(2*e^2 + 9) + 1/2*e^2*log((2*x - s
qrt(2*e^2 + 9) + 3)/(2*x + sqrt(2*e^2 + 9) + 3))/sqrt(2*e^2 + 9) + x + 9/2*log((2*x - sqrt(2*e^2 + 9) + 3)/(2*
x + sqrt(2*e^2 + 9) + 3))/sqrt(2*e^2 + 9) + 9*log(2*x^2 + 6*x - e^2)
________________________________________________________________________________________
mupad [B] time = 4.45, size = 32, normalized size = 1.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(6*x - log((3*x - exp(2)/2 + x^2)/x)*(6*x - exp(2) + 2*x^2) + log(x)*(12*x - 3*exp(2) - log((3*x - exp(2)
/2 + x^2)/x)*(6*x - exp(2) + 2*x^2) + 2*x^2) + 14*x^2 + 4*x^3 - exp(2)*(2*x + 1))/(6*x - exp(2) + 2*x^2),x)
[Out]
x - 2*x*log(x) - x^2 + x*log((3*x - exp(2)/2 + x^2)/x)*log(x)
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((exp(2)-2*x**2-6*x)*ln(1/2*(-exp(2)+2*x**2+6*x)/x)-3*exp(2)+2*x**2+12*x)*ln(x)+(exp(2)-2*x**2-6*x)
*ln(1/2*(-exp(2)+2*x**2+6*x)/x)+(-2*x-1)*exp(2)+4*x**3+14*x**2+6*x)/(exp(2)-2*x**2-6*x),x)
[Out]
Exception raised: CoercionFailed
________________________________________________________________________________________