3.69.71 75+140x+20x3+e2x(3x2+9x4+6x5)+ex(30x29x261x34x4x5+x6)25+ex(10x10x2)+e2x(x2+2x3+x4)dx

Optimal. Leaf size=32 3(1x)(3x+xex+5x+x2)

________________________________________________________________________________________

Rubi [F]  time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 75+140x+20x3+e2x(3x2+9x4+6x5)+ex(30x29x261x34x4x5+x6)25+ex(10x10x2)+e2x(x2+2x3+x4)dx

Verification is not applicable to the result.

[In]

Int[(-75 + 140*x + 20*x^3 + E^(2*x)*(-3*x^2 + 9*x^4 + 6*x^5) + E^x*(30*x - 29*x^2 - 61*x^3 - 4*x^4 - x^5 + x^6
))/(25 + E^x*(-10*x - 10*x^2) + E^(2*x)*(x^2 + 2*x^3 + x^4)),x]

[Out]

(3*(1 - 2*x)^2)/4 - 5*Defer[Int][x/(-5 + E^x*x + E^x*x^2)^2, x] - 10*Defer[Int][x^2/(-5 + E^x*x + E^x*x^2)^2,
x] + 10*Defer[Int][x^3/(-5 + E^x*x + E^x*x^2)^2, x] + 5*Defer[Int][x^4/(-5 + E^x*x + E^x*x^2)^2, x] + Defer[In
t][x/(-5 + E^x*x + E^x*x^2), x] - 2*Defer[Int][x^2/(-5 + E^x*x + E^x*x^2), x] - 2*Defer[Int][x^3/(-5 + E^x*x +
 E^x*x^2), x] + Defer[Int][x^4/(-5 + E^x*x + E^x*x^2), x]

Rubi steps

integral=75+140x+20x3+e2x(3x2+9x4+6x5)+ex(30x29x261x34x4x5+x6)(5exxexx2)2dx=(3(1+2x)+x(12x2x2+x3)5+exx+exx2+5x(12x+2x2+x3)(5+exx+exx2)2)dx=34(12x)2+5x(12x+2x2+x3)(5+exx+exx2)2dx+x(12x2x2+x3)5+exx+exx2dx=34(12x)2+5(x(5+exx+exx2)22x2(5+exx+exx2)2+2x3(5+exx+exx2)2+x4(5+exx+exx2)2)dx+(x5+exx+exx22x25+exx+exx22x35+exx+exx2+x45+exx+exx2)dx=34(12x)22x25+exx+exx2dx2x35+exx+exx2dx5x(5+exx+exx2)2dx+5x4(5+exx+exx2)2dx10x2(5+exx+exx2)2dx+10x3(5+exx+exx2)2dx+x5+exx+exx2dx+x45+exx+exx2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 27, normalized size = 0.84 x(3+3x+xx35+exx(1+x))

Antiderivative was successfully verified.

[In]

Integrate[(-75 + 140*x + 20*x^3 + E^(2*x)*(-3*x^2 + 9*x^4 + 6*x^5) + E^x*(30*x - 29*x^2 - 61*x^3 - 4*x^4 - x^5
 + x^6))/(25 + E^x*(-10*x - 10*x^2) + E^(2*x)*(x^2 + 2*x^3 + x^4)),x]

[Out]

x*(-3 + 3*x + (x - x^3)/(-5 + E^x*x*(1 + x)))

________________________________________________________________________________________

fricas [A]  time = 1.46, size = 39, normalized size = 1.22 x4+14x23(x4x2)ex15x(x2+x)ex5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x^5+9*x^4-3*x^2)*exp(x)^2+(x^6-x^5-4*x^4-61*x^3-29*x^2+30*x)*exp(x)+20*x^3+140*x-75)/((x^4+2*x^3
+x^2)*exp(x)^2+(-10*x^2-10*x)*exp(x)+25),x, algorithm="fricas")

[Out]

-(x^4 + 14*x^2 - 3*(x^4 - x^2)*e^x - 15*x)/((x^2 + x)*e^x - 5)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 43, normalized size = 1.34 3x4exx43x2ex14x2+15xx2ex+xex5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x^5+9*x^4-3*x^2)*exp(x)^2+(x^6-x^5-4*x^4-61*x^3-29*x^2+30*x)*exp(x)+20*x^3+140*x-75)/((x^4+2*x^3
+x^2)*exp(x)^2+(-10*x^2-10*x)*exp(x)+25),x, algorithm="giac")

[Out]

(3*x^4*e^x - x^4 - 3*x^2*e^x - 14*x^2 + 15*x)/(x^2*e^x + x*e^x - 5)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 35, normalized size = 1.09




method result size



risch 3x23x(x1)(x+1)x2exx2+exx5 35
norman 3exx+15x14x2x4+3exx415exx2+exx5 43



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((6*x^5+9*x^4-3*x^2)*exp(x)^2+(x^6-x^5-4*x^4-61*x^3-29*x^2+30*x)*exp(x)+20*x^3+140*x-75)/((x^4+2*x^3+x^2)*
exp(x)^2+(-10*x^2-10*x)*exp(x)+25),x,method=_RETURNVERBOSE)

[Out]

3*x^2-3*x-(x-1)*(x+1)*x^2/(exp(x)*x^2+exp(x)*x-5)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 39, normalized size = 1.22 x4+14x23(x4x2)ex15x(x2+x)ex5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x^5+9*x^4-3*x^2)*exp(x)^2+(x^6-x^5-4*x^4-61*x^3-29*x^2+30*x)*exp(x)+20*x^3+140*x-75)/((x^4+2*x^3
+x^2)*exp(x)^2+(-10*x^2-10*x)*exp(x)+25),x, algorithm="maxima")

[Out]

-(x^4 + 14*x^2 - 3*(x^4 - x^2)*e^x - 15*x)/((x^2 + x)*e^x - 5)

________________________________________________________________________________________

mupad [B]  time = 4.18, size = 38, normalized size = 1.19 x(x1)(x3x2ex3xex+x2+15)x2ex+xex5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((140*x - exp(x)*(29*x^2 - 30*x + 61*x^3 + 4*x^4 + x^5 - x^6) + exp(2*x)*(9*x^4 - 3*x^2 + 6*x^5) + 20*x^3 -
 75)/(exp(2*x)*(x^2 + 2*x^3 + x^4) - exp(x)*(10*x + 10*x^2) + 25),x)

[Out]

-(x*(x - 1)*(x - 3*x^2*exp(x) - 3*x*exp(x) + x^2 + 15))/(x^2*exp(x) + x*exp(x) - 5)

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 24, normalized size = 0.75 3x23x+x4+x2(x2+x)ex5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((6*x**5+9*x**4-3*x**2)*exp(x)**2+(x**6-x**5-4*x**4-61*x**3-29*x**2+30*x)*exp(x)+20*x**3+140*x-75)/(
(x**4+2*x**3+x**2)*exp(x)**2+(-10*x**2-10*x)*exp(x)+25),x)

[Out]

3*x**2 - 3*x + (-x**4 + x**2)/((x**2 + x)*exp(x) - 5)

________________________________________________________________________________________