3.69.71
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-75 + 140*x + 20*x^3 + E^(2*x)*(-3*x^2 + 9*x^4 + 6*x^5) + E^x*(30*x - 29*x^2 - 61*x^3 - 4*x^4 - x^5 + x^6
))/(25 + E^x*(-10*x - 10*x^2) + E^(2*x)*(x^2 + 2*x^3 + x^4)),x]
[Out]
(3*(1 - 2*x)^2)/4 - 5*Defer[Int][x/(-5 + E^x*x + E^x*x^2)^2, x] - 10*Defer[Int][x^2/(-5 + E^x*x + E^x*x^2)^2,
x] + 10*Defer[Int][x^3/(-5 + E^x*x + E^x*x^2)^2, x] + 5*Defer[Int][x^4/(-5 + E^x*x + E^x*x^2)^2, x] + Defer[In
t][x/(-5 + E^x*x + E^x*x^2), x] - 2*Defer[Int][x^2/(-5 + E^x*x + E^x*x^2), x] - 2*Defer[Int][x^3/(-5 + E^x*x +
E^x*x^2), x] + Defer[Int][x^4/(-5 + E^x*x + E^x*x^2), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 0.84
Antiderivative was successfully verified.
[In]
Integrate[(-75 + 140*x + 20*x^3 + E^(2*x)*(-3*x^2 + 9*x^4 + 6*x^5) + E^x*(30*x - 29*x^2 - 61*x^3 - 4*x^4 - x^5
+ x^6))/(25 + E^x*(-10*x - 10*x^2) + E^(2*x)*(x^2 + 2*x^3 + x^4)),x]
[Out]
x*(-3 + 3*x + (x - x^3)/(-5 + E^x*x*(1 + x)))
________________________________________________________________________________________
fricas [A] time = 1.46, size = 39, normalized size = 1.22
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((6*x^5+9*x^4-3*x^2)*exp(x)^2+(x^6-x^5-4*x^4-61*x^3-29*x^2+30*x)*exp(x)+20*x^3+140*x-75)/((x^4+2*x^3
+x^2)*exp(x)^2+(-10*x^2-10*x)*exp(x)+25),x, algorithm="fricas")
[Out]
-(x^4 + 14*x^2 - 3*(x^4 - x^2)*e^x - 15*x)/((x^2 + x)*e^x - 5)
________________________________________________________________________________________
giac [A] time = 0.14, size = 43, normalized size = 1.34
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((6*x^5+9*x^4-3*x^2)*exp(x)^2+(x^6-x^5-4*x^4-61*x^3-29*x^2+30*x)*exp(x)+20*x^3+140*x-75)/((x^4+2*x^3
+x^2)*exp(x)^2+(-10*x^2-10*x)*exp(x)+25),x, algorithm="giac")
[Out]
(3*x^4*e^x - x^4 - 3*x^2*e^x - 14*x^2 + 15*x)/(x^2*e^x + x*e^x - 5)
________________________________________________________________________________________
maple [A] time = 0.06, size = 35, normalized size = 1.09
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((6*x^5+9*x^4-3*x^2)*exp(x)^2+(x^6-x^5-4*x^4-61*x^3-29*x^2+30*x)*exp(x)+20*x^3+140*x-75)/((x^4+2*x^3+x^2)*
exp(x)^2+(-10*x^2-10*x)*exp(x)+25),x,method=_RETURNVERBOSE)
[Out]
3*x^2-3*x-(x-1)*(x+1)*x^2/(exp(x)*x^2+exp(x)*x-5)
________________________________________________________________________________________
maxima [A] time = 0.41, size = 39, normalized size = 1.22
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((6*x^5+9*x^4-3*x^2)*exp(x)^2+(x^6-x^5-4*x^4-61*x^3-29*x^2+30*x)*exp(x)+20*x^3+140*x-75)/((x^4+2*x^3
+x^2)*exp(x)^2+(-10*x^2-10*x)*exp(x)+25),x, algorithm="maxima")
[Out]
-(x^4 + 14*x^2 - 3*(x^4 - x^2)*e^x - 15*x)/((x^2 + x)*e^x - 5)
________________________________________________________________________________________
mupad [B] time = 4.18, size = 38, normalized size = 1.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((140*x - exp(x)*(29*x^2 - 30*x + 61*x^3 + 4*x^4 + x^5 - x^6) + exp(2*x)*(9*x^4 - 3*x^2 + 6*x^5) + 20*x^3 -
75)/(exp(2*x)*(x^2 + 2*x^3 + x^4) - exp(x)*(10*x + 10*x^2) + 25),x)
[Out]
-(x*(x - 1)*(x - 3*x^2*exp(x) - 3*x*exp(x) + x^2 + 15))/(x^2*exp(x) + x*exp(x) - 5)
________________________________________________________________________________________
sympy [A] time = 0.20, size = 24, normalized size = 0.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((6*x**5+9*x**4-3*x**2)*exp(x)**2+(x**6-x**5-4*x**4-61*x**3-29*x**2+30*x)*exp(x)+20*x**3+140*x-75)/(
(x**4+2*x**3+x**2)*exp(x)**2+(-10*x**2-10*x)*exp(x)+25),x)
[Out]
3*x**2 - 3*x + (-x**4 + x**2)/((x**2 + x)*exp(x) - 5)
________________________________________________________________________________________