Optimal. Leaf size=32 \[ 3-(1-x) \left (3 x+\frac {x}{-e^x+\frac {5}{x+x^2}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-75+140 x+20 x^3+e^{2 x} \left (-3 x^2+9 x^4+6 x^5\right )+e^x \left (30 x-29 x^2-61 x^3-4 x^4-x^5+x^6\right )}{25+e^x \left (-10 x-10 x^2\right )+e^{2 x} \left (x^2+2 x^3+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-75+140 x+20 x^3+e^{2 x} \left (-3 x^2+9 x^4+6 x^5\right )+e^x \left (30 x-29 x^2-61 x^3-4 x^4-x^5+x^6\right )}{\left (5-e^x x-e^x x^2\right )^2} \, dx\\ &=\int \left (3 (-1+2 x)+\frac {x \left (1-2 x-2 x^2+x^3\right )}{-5+e^x x+e^x x^2}+\frac {5 x \left (-1-2 x+2 x^2+x^3\right )}{\left (-5+e^x x+e^x x^2\right )^2}\right ) \, dx\\ &=\frac {3}{4} (1-2 x)^2+5 \int \frac {x \left (-1-2 x+2 x^2+x^3\right )}{\left (-5+e^x x+e^x x^2\right )^2} \, dx+\int \frac {x \left (1-2 x-2 x^2+x^3\right )}{-5+e^x x+e^x x^2} \, dx\\ &=\frac {3}{4} (1-2 x)^2+5 \int \left (-\frac {x}{\left (-5+e^x x+e^x x^2\right )^2}-\frac {2 x^2}{\left (-5+e^x x+e^x x^2\right )^2}+\frac {2 x^3}{\left (-5+e^x x+e^x x^2\right )^2}+\frac {x^4}{\left (-5+e^x x+e^x x^2\right )^2}\right ) \, dx+\int \left (\frac {x}{-5+e^x x+e^x x^2}-\frac {2 x^2}{-5+e^x x+e^x x^2}-\frac {2 x^3}{-5+e^x x+e^x x^2}+\frac {x^4}{-5+e^x x+e^x x^2}\right ) \, dx\\ &=\frac {3}{4} (1-2 x)^2-2 \int \frac {x^2}{-5+e^x x+e^x x^2} \, dx-2 \int \frac {x^3}{-5+e^x x+e^x x^2} \, dx-5 \int \frac {x}{\left (-5+e^x x+e^x x^2\right )^2} \, dx+5 \int \frac {x^4}{\left (-5+e^x x+e^x x^2\right )^2} \, dx-10 \int \frac {x^2}{\left (-5+e^x x+e^x x^2\right )^2} \, dx+10 \int \frac {x^3}{\left (-5+e^x x+e^x x^2\right )^2} \, dx+\int \frac {x}{-5+e^x x+e^x x^2} \, dx+\int \frac {x^4}{-5+e^x x+e^x x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 0.84 \begin {gather*} x \left (-3+3 x+\frac {x-x^3}{-5+e^x x (1+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.46, size = 39, normalized size = 1.22 \begin {gather*} -\frac {x^{4} + 14 \, x^{2} - 3 \, {\left (x^{4} - x^{2}\right )} e^{x} - 15 \, x}{{\left (x^{2} + x\right )} e^{x} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 43, normalized size = 1.34 \begin {gather*} \frac {3 \, x^{4} e^{x} - x^{4} - 3 \, x^{2} e^{x} - 14 \, x^{2} + 15 \, x}{x^{2} e^{x} + x e^{x} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 35, normalized size = 1.09
method | result | size |
risch | \(3 x^{2}-3 x -\frac {\left (x -1\right ) \left (x +1\right ) x^{2}}{{\mathrm e}^{x} x^{2}+{\mathrm e}^{x} x -5}\) | \(35\) |
norman | \(\frac {3 \,{\mathrm e}^{x} x +15 x -14 x^{2}-x^{4}+3 \,{\mathrm e}^{x} x^{4}-15}{{\mathrm e}^{x} x^{2}+{\mathrm e}^{x} x -5}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 39, normalized size = 1.22 \begin {gather*} -\frac {x^{4} + 14 \, x^{2} - 3 \, {\left (x^{4} - x^{2}\right )} e^{x} - 15 \, x}{{\left (x^{2} + x\right )} e^{x} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 38, normalized size = 1.19 \begin {gather*} -\frac {x\,\left (x-1\right )\,\left (x-3\,x^2\,{\mathrm {e}}^x-3\,x\,{\mathrm {e}}^x+x^2+15\right )}{x^2\,{\mathrm {e}}^x+x\,{\mathrm {e}}^x-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 24, normalized size = 0.75 \begin {gather*} 3 x^{2} - 3 x + \frac {- x^{4} + x^{2}}{\left (x^{2} + x\right ) e^{x} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________