3.69.72 110ex(10+4xx2+(4x+2x2)log(3))dx

Optimal. Leaf size=28 15(3+ex(4+x(1+x2xlog(3))))

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 46, normalized size of antiderivative = 1.64, number of steps used = 16, number of rules used = 4, integrand size = 31, number of rulesintegrand size = 0.129, Rules used = {12, 2196, 2194, 2176} 110exx215exx2log(3)exx5+4ex5

Antiderivative was successfully verified.

[In]

Int[(-10 + 4*x - x^2 + (-4*x + 2*x^2)*Log[3])/(10*E^x),x]

[Out]

4/(5*E^x) - x/(5*E^x) + x^2/(10*E^x) - (x^2*Log[3])/(5*E^x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=110ex(10+4xx2+(4x+2x2)log(3))dx=110(10ex+4exxexx2+2ex(2+x)xlog(3))dx=(110exx2dx)+25exxdx+15log(3)ex(2+x)xdxexdx=ex2exx5+110exx215exxdx+25exdx+15log(3)(2exx+exx2)dx=3ex5exx5+110exx215exdx+15log(3)exx2dx15(2log(3))exxdx=4ex5exx5+110exx2+25exxlog(3)15exx2log(3)15(2log(3))exdx+15(2log(3))exxdx=4ex5exx5+110exx2+25exlog(3)15exx2log(3)+15(2log(3))exdx=4ex5exx5+110exx215exx2log(3)

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 23, normalized size = 0.82 110ex(82xx2(1+log(9)))

Antiderivative was successfully verified.

[In]

Integrate[(-10 + 4*x - x^2 + (-4*x + 2*x^2)*Log[3])/(10*E^x),x]

[Out]

(8 - 2*x - x^2*(-1 + Log[9]))/(10*E^x)

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 23, normalized size = 0.82 110(2x2log(3)x2+2x8)e(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/10*((2*x^2-4*x)*log(3)-x^2+4*x-10)/exp(x),x, algorithm="fricas")

[Out]

-1/10*(2*x^2*log(3) - x^2 + 2*x - 8)*e^(-x)

________________________________________________________________________________________

giac [A]  time = 0.13, size = 23, normalized size = 0.82 110(2x2log(3)x2+2x8)e(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/10*((2*x^2-4*x)*log(3)-x^2+4*x-10)/exp(x),x, algorithm="giac")

[Out]

-1/10*(2*x^2*log(3) - x^2 + 2*x - 8)*e^(-x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 21, normalized size = 0.75




method result size



norman (45+(ln(3)5+110)x2x5)ex 21
risch (2x2ln(3)+x22x+8)ex10 22
gosper (2x2ln(3)x2+2x8)ex10 24
default 4ex5xex5+x2ex10exx2ln(3)5 35
meijerg 1+ex+(2ln(3)1)(2(3x2+6x+6)ex3)10+(4ln(3)+4)(1(2x+2)ex2)10 54



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/10*((2*x^2-4*x)*ln(3)-x^2+4*x-10)/exp(x),x,method=_RETURNVERBOSE)

[Out]

(4/5+(-1/5*ln(3)+1/10)*x^2-1/5*x)/exp(x)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 55, normalized size = 1.96 15(x2+2x+2)e(x)log(3)+25(x+1)e(x)log(3)+110(x2+2x+2)e(x)25(x+1)e(x)+e(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/10*((2*x^2-4*x)*log(3)-x^2+4*x-10)/exp(x),x, algorithm="maxima")

[Out]

-1/5*(x^2 + 2*x + 2)*e^(-x)*log(3) + 2/5*(x + 1)*e^(-x)*log(3) + 1/10*(x^2 + 2*x + 2)*e^(-x) - 2/5*(x + 1)*e^(
-x) + e^(-x)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 22, normalized size = 0.79 ex(2x+x2ln(9)x28)10

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(-x)*((log(3)*(4*x - 2*x^2))/10 - (2*x)/5 + x^2/10 + 1),x)

[Out]

-(exp(-x)*(2*x + x^2*log(9) - x^2 - 8))/10

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 20, normalized size = 0.71 (2x2log(3)+x22x+8)ex10

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/10*((2*x**2-4*x)*ln(3)-x**2+4*x-10)/exp(x),x)

[Out]

(-2*x**2*log(3) + x**2 - 2*x + 8)*exp(-x)/10

________________________________________________________________________________________