Optimal. Leaf size=27 \[ \frac {9}{x^2 \left (-e^{x^2}-x+\frac {9+x+\log (4)}{x}\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.45, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 3, number of rules used = 3, integrand size = 189, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {6688, 12, 6686} \begin {gather*} \frac {9}{\left (-x^2+\left (1-e^{x^2}\right ) x+9+\log (4)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 \left (1-2 x-e^{x^2} \left (1+2 x^2\right )\right )}{\left (\left (-1+e^{x^2}\right ) x+x^2-9 \left (1+\frac {2 \log (2)}{9}\right )\right )^3} \, dx\\ &=18 \int \frac {1-2 x-e^{x^2} \left (1+2 x^2\right )}{\left (\left (-1+e^{x^2}\right ) x+x^2-9 \left (1+\frac {2 \log (2)}{9}\right )\right )^3} \, dx\\ &=\frac {9}{\left (9+\left (1-e^{x^2}\right ) x-x^2+\log (4)\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 22, normalized size = 0.81 \begin {gather*} \frac {9}{\left (-9+\left (-1+e^{x^2}\right ) x+x^2-\log (4)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.21, size = 73, normalized size = 2.70 \begin {gather*} \frac {9}{x^{4} - 2 \, x^{3} + x^{2} e^{\left (2 \, x^{2}\right )} - 17 \, x^{2} + 2 \, {\left (x^{3} - x^{2} - 2 \, x \log \relax (2) - 9 \, x\right )} e^{\left (x^{2}\right )} - 4 \, {\left (x^{2} - x - 9\right )} \log \relax (2) + 4 \, \log \relax (2)^{2} + 18 \, x + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.57, size = 88, normalized size = 3.26 \begin {gather*} \frac {9}{x^{4} + 2 \, x^{3} e^{\left (x^{2}\right )} - 2 \, x^{3} + x^{2} e^{\left (2 \, x^{2}\right )} - 2 \, x^{2} e^{\left (x^{2}\right )} - 4 \, x^{2} \log \relax (2) - 4 \, x e^{\left (x^{2}\right )} \log \relax (2) - 17 \, x^{2} - 18 \, x e^{\left (x^{2}\right )} + 4 \, x \log \relax (2) + 4 \, \log \relax (2)^{2} + 18 \, x + 36 \, \log \relax (2) + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.78, size = 24, normalized size = 0.89
method | result | size |
norman | \(\frac {9}{\left (-{\mathrm e}^{x^{2}} x -x^{2}+2 \ln \relax (2)+x +9\right )^{2}}\) | \(24\) |
risch | \(\frac {9}{\left (-{\mathrm e}^{x^{2}} x -x^{2}+2 \ln \relax (2)+x +9\right )^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 78, normalized size = 2.89 \begin {gather*} \frac {9}{x^{4} - 2 \, x^{3} - x^{2} {\left (4 \, \log \relax (2) + 17\right )} + x^{2} e^{\left (2 \, x^{2}\right )} + 2 \, x {\left (2 \, \log \relax (2) + 9\right )} + 2 \, {\left (x^{3} - x^{2} - x {\left (2 \, \log \relax (2) + 9\right )}\right )} e^{\left (x^{2}\right )} + 4 \, \log \relax (2)^{2} + 36 \, \log \relax (2) + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {36\,x+{\mathrm {e}}^{x^2}\,\left (36\,x^2+18\right )-18}{243\,x+4\,{\ln \relax (2)}^2\,\left (-3\,x^2+3\,x+27\right )+{\mathrm {e}}^{2\,x^2}\,\left (6\,x^2\,\ln \relax (2)+27\,x^2+3\,x^3-3\,x^4\right )+2\,\ln \relax (2)\,\left (3\,x^4-6\,x^3-51\,x^2+54\,x+243\right )-{\mathrm {e}}^{x^2}\,\left (243\,x+2\,\ln \relax (2)\,\left (-6\,x^3+6\,x^2+54\,x\right )+12\,x\,{\ln \relax (2)}^2+54\,x^2-51\,x^3-6\,x^4+3\,x^5\right )+8\,{\ln \relax (2)}^3-x^3\,{\mathrm {e}}^{3\,x^2}-216\,x^2-53\,x^3+24\,x^4+3\,x^5-x^6+729} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.36, size = 82, normalized size = 3.04 \begin {gather*} \frac {9}{x^{4} - 2 x^{3} + x^{2} e^{2 x^{2}} - 17 x^{2} - 4 x^{2} \log {\relax (2 )} + 4 x \log {\relax (2 )} + 18 x + \left (2 x^{3} - 2 x^{2} - 18 x - 4 x \log {\relax (2 )}\right ) e^{x^{2}} + 4 \log {\relax (2 )}^{2} + 36 \log {\relax (2 )} + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________