3.69.74 49x4e2+xx+(4e2+x9x+4log(x))log(14(4e2+x+9x4log(x)))+(4e2+x+9x4log(x))log(14(4e2+x+9x4log(x)))log(xlog(14(4e2+x+9x4log(x))))(4e2+xx29x3+4x2log(x))log(14(4e2+x+9x4log(x)))dx

Optimal. Leaf size=23 log(xlog(e2+x+9x4log(x)))x

________________________________________________________________________________________

Rubi [A]  time = 8.43, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 7, integrand size = 156, number of rulesintegrand size = 0.045, Rules used = {6742, 6741, 12, 6688, 14, 30, 2555} log(xlog(9x4+ex2log(x)))x

Antiderivative was successfully verified.

[In]

Int[(4 - 9*x - 4*E^(-2 + x)*x + (-4*E^(-2 + x) - 9*x + 4*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4] + (4*E
^(-2 + x) + 9*x - 4*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]*Log[x*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4
]])/((-4*E^(-2 + x)*x^2 - 9*x^3 + 4*x^2*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]),x]

[Out]

Log[x*Log[E^(-2 + x) + (9*x)/4 - Log[x]]]/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2555

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*Simplify
[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(e2(49x+9x24xlog(x))x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))+x+log(e2+x+9x4log(x))log(e2+x+9x4log(x))log(xlog(e2+x+9x4log(x)))x2log(e2+x+9x4log(x)))dx=(e249x+9x24xlog(x)x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx)+x+log(e2+x+9x4log(x))log(e2+x+9x4log(x))log(xlog(e2+x+9x4log(x)))x2log(e2+x+9x4log(x))dx=(e2(9(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))+4x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))9x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))4log(x)x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x)))dx)+1+xlog(e2+x+9x4log(x))log(xlog(e2+x+9x4log(x)))x2dx=((4e2)1x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx)+(4e2)log(x)x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx(9e2)1(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(9e2)1x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(x+log(e2+x+9x4log(x))x2log(e2+x+9x4log(x))log(xlog(e2+x+9x4log(x)))x2)dx=((4e2)1x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx)+(4e2)log(x)x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(9e2)1x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx(36e2)Subst(1(4e4x+36e2x4e2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)+x+log(e2+x+9x4log(x))x2log(e2+x+9x4log(x))dxlog(xlog(e2+x+9x4log(x)))x2dx=log(xlog(e2+x+9x4log(x)))x(4e2)1x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(4e2)log(x)x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(9e2)1x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx(36e2)Subst(14(e4x+9e2xe2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)+1+xlog(e2+x+9x4log(x))x2dx1x+94+e2+x1x(e2+x+9x4log(x))log(e2+x+9x4log(x))xdx=log(xlog(e2+x+9x4log(x)))x(4e2)1x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(4e2)log(x)x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(9e2)1x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx(9e2)Subst(1(e4x+9e2xe2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)+(1x2+1xlog(e2+x+9x4log(x)))dx(e2(49x+9x24xlog(x))x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))+x+log(e2+x+9x4log(x))x2log(e2+x+9x4log(x)))dx=1x+log(xlog(e2+x+9x4log(x)))x+e249x+9x24xlog(x)x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx(4e2)1x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(4e2)log(x)x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(9e2)1x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx(9e2)Subst(1(e4x+9e2xe2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)+1xlog(e2+x+9x4log(x))dxx+log(e2+x+9x4log(x))x2log(e2+x+9x4log(x))dx=1x+log(xlog(e2+x+9x4log(x)))x+e2(9(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))+4x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))9x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))4log(x)x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x)))dx(4e2)1x2(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(4e2)log(x)x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx+(9e2)1x(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx(9e2)Subst(1(e4x+9e2xe2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)1+xlog(e2+x+9x4log(x))x2dx+1xlog(e2+x+9x4log(x))dx=1x+log(xlog(e2+x+9x4log(x)))x+(9e2)1(4ex+9e2x4e2log(x))log(e2+x+9x4log(x))dx(9e2)Subst(1(e4x+9e2xe2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)(1x2+1xlog(e2+x+9x4log(x)))dx+1xlog(e2+x+9x4log(x))dx=log(xlog(e2+x+9x4log(x)))x(9e2)Subst(1(e4x+9e2xe2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)+(36e2)Subst(1(4e4x+36e2x4e2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)=log(xlog(e2+x+9x4log(x)))x(9e2)Subst(1(e4x+9e2xe2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)+(36e2)Subst(14(e4x+9e2xe2log(4x))log(e2+4x+9xlog(4x))dx,x,x4)=log(xlog(e2+x+9x4log(x)))x

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 23, normalized size = 1.00 log(xlog(e2+x+9x4log(x)))x

Antiderivative was successfully verified.

[In]

Integrate[(4 - 9*x - 4*E^(-2 + x)*x + (-4*E^(-2 + x) - 9*x + 4*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]
+ (4*E^(-2 + x) + 9*x - 4*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]*Log[x*Log[(4*E^(-2 + x) + 9*x - 4*Log
[x])/4]])/((-4*E^(-2 + x)*x^2 - 9*x^3 + 4*x^2*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]),x]

[Out]

Log[x*Log[E^(-2 + x) + (9*x)/4 - Log[x]]]/x

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 20, normalized size = 0.87 log(xlog(94x+e(x2)log(x)))x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(x)+4*exp(x-2)+9*x)*log(-log(x)+exp(x-2)+9/4*x)*log(x*log(-log(x)+exp(x-2)+9/4*x))+(4*log(x)
-4*exp(x-2)-9*x)*log(-log(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x^2*log(x)-4*x^2*exp(x-2)-9*x^3)/log(-log(
x)+exp(x-2)+9/4*x),x, algorithm="fricas")

[Out]

log(x*log(9/4*x + e^(x - 2) - log(x)))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (9x+4e(x2)4log(x))log(xlog(94x+e(x2)log(x)))log(94x+e(x2)log(x))4xe(x2)(9x+4e(x2)4log(x))log(94x+e(x2)log(x))9x+4(9x3+4x2e(x2)4x2log(x))log(94x+e(x2)log(x))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(x)+4*exp(x-2)+9*x)*log(-log(x)+exp(x-2)+9/4*x)*log(x*log(-log(x)+exp(x-2)+9/4*x))+(4*log(x)
-4*exp(x-2)-9*x)*log(-log(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x^2*log(x)-4*x^2*exp(x-2)-9*x^3)/log(-log(
x)+exp(x-2)+9/4*x),x, algorithm="giac")

[Out]

integrate(-((9*x + 4*e^(x - 2) - 4*log(x))*log(x*log(9/4*x + e^(x - 2) - log(x)))*log(9/4*x + e^(x - 2) - log(
x)) - 4*x*e^(x - 2) - (9*x + 4*e^(x - 2) - 4*log(x))*log(9/4*x + e^(x - 2) - log(x)) - 9*x + 4)/((9*x^3 + 4*x^
2*e^(x - 2) - 4*x^2*log(x))*log(9/4*x + e^(x - 2) - log(x))), x)

________________________________________________________________________________________

maple [C]  time = 0.12, size = 168, normalized size = 7.30




method result size



risch ln(ln(ln(x)+ex2+9x4))x+iπcsgn(ix)csgn(iln(ln(x)+ex2+9x4))csgn(ixln(ln(x)+ex2+9x4))+iπcsgn(ix)csgn(ixln(ln(x)+ex2+9x4))2+iπcsgn(iln(ln(x)+ex2+9x4))csgn(ixln(ln(x)+ex2+9x4))2iπcsgn(ixln(ln(x)+ex2+9x4))3+2ln(x)2x 168



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-4*ln(x)+4*exp(x-2)+9*x)*ln(-ln(x)+exp(x-2)+9/4*x)*ln(x*ln(-ln(x)+exp(x-2)+9/4*x))+(4*ln(x)-4*exp(x-2)-9
*x)*ln(-ln(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x^2*ln(x)-4*x^2*exp(x-2)-9*x^3)/ln(-ln(x)+exp(x-2)+9/4*x)
,x,method=_RETURNVERBOSE)

[Out]

1/x*ln(ln(-ln(x)+exp(x-2)+9/4*x))+1/2*(-I*Pi*csgn(I*x)*csgn(I*ln(-ln(x)+exp(x-2)+9/4*x))*csgn(I*x*ln(-ln(x)+ex
p(x-2)+9/4*x))+I*Pi*csgn(I*x)*csgn(I*x*ln(-ln(x)+exp(x-2)+9/4*x))^2+I*Pi*csgn(I*ln(-ln(x)+exp(x-2)+9/4*x))*csg
n(I*x*ln(-ln(x)+exp(x-2)+9/4*x))^2-I*Pi*csgn(I*x*ln(-ln(x)+exp(x-2)+9/4*x))^3+2*ln(x))/x

________________________________________________________________________________________

maxima [A]  time = 0.60, size = 31, normalized size = 1.35 log(x)+log(2log(2)+log(9xe24e2log(x)+4ex)2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(x)+4*exp(x-2)+9*x)*log(-log(x)+exp(x-2)+9/4*x)*log(x*log(-log(x)+exp(x-2)+9/4*x))+(4*log(x)
-4*exp(x-2)-9*x)*log(-log(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x^2*log(x)-4*x^2*exp(x-2)-9*x^3)/log(-log(
x)+exp(x-2)+9/4*x),x, algorithm="maxima")

[Out]

(log(x) + log(-2*log(2) + log(9*x*e^2 - 4*e^2*log(x) + 4*e^x) - 2))/x

________________________________________________________________________________________

mupad [B]  time = 4.99, size = 21, normalized size = 0.91 ln(xln(9x4ln(x)+e2ex))x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((9*x + 4*x*exp(x - 2) + log((9*x)/4 + exp(x - 2) - log(x))*(9*x + 4*exp(x - 2) - 4*log(x)) - log((9*x)/4 +
 exp(x - 2) - log(x))*log(x*log((9*x)/4 + exp(x - 2) - log(x)))*(9*x + 4*exp(x - 2) - 4*log(x)) - 4)/(log((9*x
)/4 + exp(x - 2) - log(x))*(4*x^2*exp(x - 2) - 4*x^2*log(x) + 9*x^3)),x)

[Out]

log(x*log((9*x)/4 - log(x) + exp(-2)*exp(x)))/x

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*ln(x)+4*exp(x-2)+9*x)*ln(-ln(x)+exp(x-2)+9/4*x)*ln(x*ln(-ln(x)+exp(x-2)+9/4*x))+(4*ln(x)-4*exp(
x-2)-9*x)*ln(-ln(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x**2*ln(x)-4*x**2*exp(x-2)-9*x**3)/ln(-ln(x)+exp(x-
2)+9/4*x),x)

[Out]

Timed out

________________________________________________________________________________________