3.69.74
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [A] time = 8.43, antiderivative size = 23, normalized size of antiderivative = 1.00,
number of steps used = 24, number of rules used = 7, integrand size = 156, = 0.045, Rules used
= {6742, 6741, 12, 6688, 14, 30, 2555}
Antiderivative was successfully verified.
[In]
Int[(4 - 9*x - 4*E^(-2 + x)*x + (-4*E^(-2 + x) - 9*x + 4*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4] + (4*E
^(-2 + x) + 9*x - 4*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]*Log[x*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4
]])/((-4*E^(-2 + x)*x^2 - 9*x^3 + 4*x^2*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]),x]
[Out]
Log[x*Log[E^(-2 + x) + (9*x)/4 - Log[x]]]/x
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2555
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*Simplify
[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 23, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(4 - 9*x - 4*E^(-2 + x)*x + (-4*E^(-2 + x) - 9*x + 4*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]
+ (4*E^(-2 + x) + 9*x - 4*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]*Log[x*Log[(4*E^(-2 + x) + 9*x - 4*Log
[x])/4]])/((-4*E^(-2 + x)*x^2 - 9*x^3 + 4*x^2*Log[x])*Log[(4*E^(-2 + x) + 9*x - 4*Log[x])/4]),x]
[Out]
Log[x*Log[E^(-2 + x) + (9*x)/4 - Log[x]]]/x
________________________________________________________________________________________
fricas [A] time = 0.58, size = 20, normalized size = 0.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(x)+4*exp(x-2)+9*x)*log(-log(x)+exp(x-2)+9/4*x)*log(x*log(-log(x)+exp(x-2)+9/4*x))+(4*log(x)
-4*exp(x-2)-9*x)*log(-log(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x^2*log(x)-4*x^2*exp(x-2)-9*x^3)/log(-log(
x)+exp(x-2)+9/4*x),x, algorithm="fricas")
[Out]
log(x*log(9/4*x + e^(x - 2) - log(x)))/x
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(x)+4*exp(x-2)+9*x)*log(-log(x)+exp(x-2)+9/4*x)*log(x*log(-log(x)+exp(x-2)+9/4*x))+(4*log(x)
-4*exp(x-2)-9*x)*log(-log(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x^2*log(x)-4*x^2*exp(x-2)-9*x^3)/log(-log(
x)+exp(x-2)+9/4*x),x, algorithm="giac")
[Out]
integrate(-((9*x + 4*e^(x - 2) - 4*log(x))*log(x*log(9/4*x + e^(x - 2) - log(x)))*log(9/4*x + e^(x - 2) - log(
x)) - 4*x*e^(x - 2) - (9*x + 4*e^(x - 2) - 4*log(x))*log(9/4*x + e^(x - 2) - log(x)) - 9*x + 4)/((9*x^3 + 4*x^
2*e^(x - 2) - 4*x^2*log(x))*log(9/4*x + e^(x - 2) - log(x))), x)
________________________________________________________________________________________
maple [C] time = 0.12, size = 168, normalized size = 7.30
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-4*ln(x)+4*exp(x-2)+9*x)*ln(-ln(x)+exp(x-2)+9/4*x)*ln(x*ln(-ln(x)+exp(x-2)+9/4*x))+(4*ln(x)-4*exp(x-2)-9
*x)*ln(-ln(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x^2*ln(x)-4*x^2*exp(x-2)-9*x^3)/ln(-ln(x)+exp(x-2)+9/4*x)
,x,method=_RETURNVERBOSE)
[Out]
1/x*ln(ln(-ln(x)+exp(x-2)+9/4*x))+1/2*(-I*Pi*csgn(I*x)*csgn(I*ln(-ln(x)+exp(x-2)+9/4*x))*csgn(I*x*ln(-ln(x)+ex
p(x-2)+9/4*x))+I*Pi*csgn(I*x)*csgn(I*x*ln(-ln(x)+exp(x-2)+9/4*x))^2+I*Pi*csgn(I*ln(-ln(x)+exp(x-2)+9/4*x))*csg
n(I*x*ln(-ln(x)+exp(x-2)+9/4*x))^2-I*Pi*csgn(I*x*ln(-ln(x)+exp(x-2)+9/4*x))^3+2*ln(x))/x
________________________________________________________________________________________
maxima [A] time = 0.60, size = 31, normalized size = 1.35
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(x)+4*exp(x-2)+9*x)*log(-log(x)+exp(x-2)+9/4*x)*log(x*log(-log(x)+exp(x-2)+9/4*x))+(4*log(x)
-4*exp(x-2)-9*x)*log(-log(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x^2*log(x)-4*x^2*exp(x-2)-9*x^3)/log(-log(
x)+exp(x-2)+9/4*x),x, algorithm="maxima")
[Out]
(log(x) + log(-2*log(2) + log(9*x*e^2 - 4*e^2*log(x) + 4*e^x) - 2))/x
________________________________________________________________________________________
mupad [B] time = 4.99, size = 21, normalized size = 0.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((9*x + 4*x*exp(x - 2) + log((9*x)/4 + exp(x - 2) - log(x))*(9*x + 4*exp(x - 2) - 4*log(x)) - log((9*x)/4 +
exp(x - 2) - log(x))*log(x*log((9*x)/4 + exp(x - 2) - log(x)))*(9*x + 4*exp(x - 2) - 4*log(x)) - 4)/(log((9*x
)/4 + exp(x - 2) - log(x))*(4*x^2*exp(x - 2) - 4*x^2*log(x) + 9*x^3)),x)
[Out]
log(x*log((9*x)/4 - log(x) + exp(-2)*exp(x)))/x
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*ln(x)+4*exp(x-2)+9*x)*ln(-ln(x)+exp(x-2)+9/4*x)*ln(x*ln(-ln(x)+exp(x-2)+9/4*x))+(4*ln(x)-4*exp(
x-2)-9*x)*ln(-ln(x)+exp(x-2)+9/4*x)-4*x*exp(x-2)-9*x+4)/(4*x**2*ln(x)-4*x**2*exp(x-2)-9*x**3)/ln(-ln(x)+exp(x-
2)+9/4*x),x)
[Out]
Timed out
________________________________________________________________________________________