Optimal. Leaf size=18 \[ e^{5+x} \left (2+e^{25+\frac {x}{5}}\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 49, normalized size of antiderivative = 2.72, number of steps used = 7, number of rules used = 4, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 6742, 2176, 2194} \begin {gather*} 2 e^{x+5} (x+1)-2 e^{x+5}-\frac {5}{6} e^{\frac {6 x}{5}+30}+\frac {1}{6} e^{\frac {6 x}{5}+30} (6 x+5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^x \left (e^{5+\frac {125+x}{5}} (5+6 x)+e^5 (10+10 x)\right ) \, dx\\ &=\frac {1}{5} \int \left (10 e^{5+x} (1+x)+e^{30+\frac {6 x}{5}} (5+6 x)\right ) \, dx\\ &=\frac {1}{5} \int e^{30+\frac {6 x}{5}} (5+6 x) \, dx+2 \int e^{5+x} (1+x) \, dx\\ &=2 e^{5+x} (1+x)+\frac {1}{6} e^{30+\frac {6 x}{5}} (5+6 x)-2 \int e^{5+x} \, dx-\int e^{30+\frac {6 x}{5}} \, dx\\ &=-2 e^{5+x}-\frac {5}{6} e^{30+\frac {6 x}{5}}+2 e^{5+x} (1+x)+\frac {1}{6} e^{30+\frac {6 x}{5}} (5+6 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 1.11 \begin {gather*} 2 e^{5+x} x+e^{30+\frac {6 x}{5}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 19, normalized size = 1.06 \begin {gather*} {\left (x e^{\left (\frac {6}{5} \, x + 180\right )} + 2 \, x e^{\left (x + 155\right )}\right )} e^{\left (-150\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 16, normalized size = 0.89 \begin {gather*} x e^{\left (\frac {6}{5} \, x + 30\right )} + 2 \, x e^{\left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 17, normalized size = 0.94
method | result | size |
risch | \(x \,{\mathrm e}^{\frac {6 x}{5}+30}+2 x \,{\mathrm e}^{5+x}\) | \(17\) |
norman | \({\mathrm e}^{-125} {\mathrm e}^{5} x \,{\mathrm e}^{\frac {6 x}{5}+150}+2 \,{\mathrm e}^{-125} {\mathrm e}^{5} x \,{\mathrm e}^{x +125}\) | \(35\) |
default | \(2 \,{\mathrm e}^{5} {\mathrm e}^{x}+2 \,{\mathrm e}^{5} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )-25 \,{\mathrm e}^{\frac {6 x}{5}+30}+\frac {5 \,{\mathrm e}^{\frac {6 x}{5}+30} \left (\frac {6 x}{5}+30\right )}{6}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 44, normalized size = 2.44 \begin {gather*} \frac {1}{6} \, {\left (6 \, x e^{30} - 5 \, e^{30}\right )} e^{\left (\frac {6}{5} \, x\right )} + 2 \, {\left (x e^{5} - e^{5}\right )} e^{x} + \frac {5}{6} \, e^{\left (\frac {6}{5} \, x + 30\right )} + 2 \, e^{\left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 15, normalized size = 0.83 \begin {gather*} x\,\left (2\,{\mathrm {e}}^{x+5}+{\mathrm {e}}^{\frac {6\,x}{5}+30}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 1.11 \begin {gather*} x e^{30} \left (e^{x}\right )^{\frac {6}{5}} + 2 x e^{5} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________