Optimal. Leaf size=26 \[ \frac {3 x (3+x)}{\left (8+\frac {3}{x}\right ) \left (2+e^{2 x} x\right )^4} \]
________________________________________________________________________________________
Rubi [F] time = 1.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {108 x+198 x^2+96 x^3+e^{2 x} \left (-54 x^2-441 x^3-696 x^4-192 x^5\right )}{288+1536 x+2048 x^2+e^{2 x} \left (720 x+3840 x^2+5120 x^3\right )+e^{4 x} \left (720 x^2+3840 x^3+5120 x^4\right )+e^{6 x} \left (360 x^3+1920 x^4+2560 x^5\right )+e^{8 x} \left (90 x^4+480 x^5+640 x^6\right )+e^{10 x} \left (9 x^5+48 x^6+64 x^7\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x \left (36-6 \left (-11+3 e^{2 x}\right ) x-\left (-32+147 e^{2 x}\right ) x^2-232 e^{2 x} x^3-64 e^{2 x} x^4\right )}{(3+8 x)^2 \left (2+e^{2 x} x\right )^5} \, dx\\ &=3 \int \frac {x \left (36-6 \left (-11+3 e^{2 x}\right ) x-\left (-32+147 e^{2 x}\right ) x^2-232 e^{2 x} x^3-64 e^{2 x} x^4\right )}{(3+8 x)^2 \left (2+e^{2 x} x\right )^5} \, dx\\ &=3 \int \left (\frac {8 x \left (3+7 x+2 x^2\right )}{(3+8 x) \left (2+e^{2 x} x\right )^5}-\frac {x \left (18+147 x+232 x^2+64 x^3\right )}{(3+8 x)^2 \left (2+e^{2 x} x\right )^4}\right ) \, dx\\ &=-\left (3 \int \frac {x \left (18+147 x+232 x^2+64 x^3\right )}{(3+8 x)^2 \left (2+e^{2 x} x\right )^4} \, dx\right )+24 \int \frac {x \left (3+7 x+2 x^2\right )}{(3+8 x) \left (2+e^{2 x} x\right )^5} \, dx\\ &=-\left (3 \int \left (\frac {23 x}{8 \left (2+e^{2 x} x\right )^4}+\frac {x^2}{\left (2+e^{2 x} x\right )^4}+\frac {189}{64 (3+8 x)^2 \left (2+e^{2 x} x\right )^4}-\frac {63}{64 (3+8 x) \left (2+e^{2 x} x\right )^4}\right ) \, dx\right )+24 \int \left (\frac {21}{256 \left (2+e^{2 x} x\right )^5}+\frac {25 x}{32 \left (2+e^{2 x} x\right )^5}+\frac {x^2}{4 \left (2+e^{2 x} x\right )^5}-\frac {63}{256 (3+8 x) \left (2+e^{2 x} x\right )^5}\right ) \, dx\\ &=\frac {63}{32} \int \frac {1}{\left (2+e^{2 x} x\right )^5} \, dx+\frac {189}{64} \int \frac {1}{(3+8 x) \left (2+e^{2 x} x\right )^4} \, dx-3 \int \frac {x^2}{\left (2+e^{2 x} x\right )^4} \, dx-\frac {189}{32} \int \frac {1}{(3+8 x) \left (2+e^{2 x} x\right )^5} \, dx+6 \int \frac {x^2}{\left (2+e^{2 x} x\right )^5} \, dx-\frac {69}{8} \int \frac {x}{\left (2+e^{2 x} x\right )^4} \, dx-\frac {567}{64} \int \frac {1}{(3+8 x)^2 \left (2+e^{2 x} x\right )^4} \, dx+\frac {75}{4} \int \frac {x}{\left (2+e^{2 x} x\right )^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 26, normalized size = 1.00 \begin {gather*} \frac {3 x^2 (3+x)}{(3+8 x) \left (2+e^{2 x} x\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 83, normalized size = 3.19 \begin {gather*} \frac {3 \, {\left (x^{3} + 3 \, x^{2}\right )}}{{\left (8 \, x^{5} + 3 \, x^{4}\right )} e^{\left (8 \, x\right )} + 8 \, {\left (8 \, x^{4} + 3 \, x^{3}\right )} e^{\left (6 \, x\right )} + 24 \, {\left (8 \, x^{3} + 3 \, x^{2}\right )} e^{\left (4 \, x\right )} + 32 \, {\left (8 \, x^{2} + 3 \, x\right )} e^{\left (2 \, x\right )} + 128 \, x + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 88, normalized size = 3.38 \begin {gather*} \frac {3 \, {\left (x^{3} + 3 \, x^{2}\right )}}{8 \, x^{5} e^{\left (8 \, x\right )} + 3 \, x^{4} e^{\left (8 \, x\right )} + 64 \, x^{4} e^{\left (6 \, x\right )} + 24 \, x^{3} e^{\left (6 \, x\right )} + 192 \, x^{3} e^{\left (4 \, x\right )} + 72 \, x^{2} e^{\left (4 \, x\right )} + 256 \, x^{2} e^{\left (2 \, x\right )} + 96 \, x e^{\left (2 \, x\right )} + 128 \, x + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 1.00
method | result | size |
risch | \(\frac {3 x^{2} \left (3+x \right )}{\left (8 x +3\right ) \left (x \,{\mathrm e}^{2 x}+2\right )^{4}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 83, normalized size = 3.19 \begin {gather*} \frac {3 \, {\left (x^{3} + 3 \, x^{2}\right )}}{{\left (8 \, x^{5} + 3 \, x^{4}\right )} e^{\left (8 \, x\right )} + 8 \, {\left (8 \, x^{4} + 3 \, x^{3}\right )} e^{\left (6 \, x\right )} + 24 \, {\left (8 \, x^{3} + 3 \, x^{2}\right )} e^{\left (4 \, x\right )} + 32 \, {\left (8 \, x^{2} + 3 \, x\right )} e^{\left (2 \, x\right )} + 128 \, x + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.39, size = 74, normalized size = 2.85 \begin {gather*} \frac {3\,\left (16\,x^5+62\,x^4+45\,x^3+9\,x^2\right )}{\left (2\,x+1\right )\,{\left (8\,x+3\right )}^2\,\left (32\,x\,{\mathrm {e}}^{2\,x}+24\,x^2\,{\mathrm {e}}^{4\,x}+8\,x^3\,{\mathrm {e}}^{6\,x}+x^4\,{\mathrm {e}}^{8\,x}+16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 73, normalized size = 2.81 \begin {gather*} \frac {3 x^{3} + 9 x^{2}}{128 x + \left (256 x^{2} + 96 x\right ) e^{2 x} + \left (192 x^{3} + 72 x^{2}\right ) e^{4 x} + \left (64 x^{4} + 24 x^{3}\right ) e^{6 x} + \left (8 x^{5} + 3 x^{4}\right ) e^{8 x} + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________