Optimal. Leaf size=24 \[ e^{(4-x) \left (-2+2 x+\left (-3+\log \left (\frac {\log (x)}{5}\right )\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 12.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \left (-24+6 x+\left (x-4 x^2\right ) \log (x)+(8-2 x+6 x \log (x)) \log \left (\frac {\log (x)}{5}\right )-x \log (x) \log ^2\left (\frac {\log (x)}{5}\right )\right )}{x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \left (-24+6 x+x \log (x)-4 x^2 \log (x)\right )}{x \log (x)}+\frac {2 \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) (4-x+3 x \log (x)) \log \left (\frac {\log (x)}{5}\right )}{x \log (x)}-\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \, dx\\ &=2 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) (4-x+3 x \log (x)) \log \left (\frac {\log (x)}{5}\right )}{x \log (x)} \, dx+\int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \left (-24+6 x+x \log (x)-4 x^2 \log (x)\right )}{x \log (x)} \, dx-\int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log ^2\left (\frac {\log (x)}{5}\right ) \, dx\\ &=2 \int \left (3 \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )-\frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )}{\log (x)}+\frac {4 \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )}{x \log (x)}\right ) \, dx+\int \left (\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right )-4 \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) x+\frac {6 \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) (-4+x)}{x \log (x)}\right ) \, dx-\int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log ^2\left (\frac {\log (x)}{5}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )}{\log (x)} \, dx\right )-4 \int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) x \, dx+6 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) (-4+x)}{x \log (x)} \, dx+6 \int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right ) \, dx+8 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )}{x \log (x)} \, dx+\int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \, dx-\int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log ^2\left (\frac {\log (x)}{5}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )}{\log (x)} \, dx\right )-4 \int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) x \, dx+6 \int \left (\frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right )}{\log (x)}-\frac {4 \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right )}{x \log (x)}\right ) \, dx+6 \int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right ) \, dx+8 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )}{x \log (x)} \, dx+\int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \, dx-\int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log ^2\left (\frac {\log (x)}{5}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )}{\log (x)} \, dx\right )-4 \int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) x \, dx+6 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right )}{\log (x)} \, dx+6 \int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right ) \, dx+8 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log \left (\frac {\log (x)}{5}\right )}{x \log (x)} \, dx-24 \int \frac {\exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right )}{x \log (x)} \, dx+\int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \, dx-\int \exp \left (28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )\right ) \log ^2\left (\frac {\log (x)}{5}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.47, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{28+x-2 x^2+(-24+6 x) \log \left (\frac {\log (x)}{5}\right )+(4-x) \log ^2\left (\frac {\log (x)}{5}\right )} \left (-24+6 x+\left (x-4 x^2\right ) \log (x)+(8-2 x+6 x \log (x)) \log \left (\frac {\log (x)}{5}\right )-x \log (x) \log ^2\left (\frac {\log (x)}{5}\right )\right )}{x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 31, normalized size = 1.29 \begin {gather*} e^{\left (-{\left (x - 4\right )} \log \left (\frac {1}{5} \, \log \relax (x)\right )^{2} - 2 \, x^{2} + 6 \, {\left (x - 4\right )} \log \left (\frac {1}{5} \, \log \relax (x)\right ) + x + 28\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 5.24, size = 43, normalized size = 1.79 \begin {gather*} e^{\left (-x \log \left (\frac {1}{5} \, \log \relax (x)\right )^{2} - 2 \, x^{2} + 6 \, x \log \left (\frac {1}{5} \, \log \relax (x)\right ) + 4 \, \log \left (\frac {1}{5} \, \log \relax (x)\right )^{2} + x - 24 \, \log \left (\frac {1}{5} \, \log \relax (x)\right ) + 28\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.25
method | result | size |
risch | \(\left (\frac {\ln \relax (x )}{5}\right )^{6 x -24} {\mathrm e}^{-\left (x -4\right ) \left (\ln \left (\frac {\ln \relax (x )}{5}\right )^{2}+2 x +7\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 69, normalized size = 2.88 \begin {gather*} \frac {59604644775390625 \, e^{\left (-x \log \relax (5)^{2} + 2 \, x \log \relax (5) \log \left (\log \relax (x)\right ) - x \log \left (\log \relax (x)\right )^{2} - 2 \, x^{2} - 6 \, x \log \relax (5) + 4 \, \log \relax (5)^{2} + 6 \, x \log \left (\log \relax (x)\right ) - 8 \, \log \relax (5) \log \left (\log \relax (x)\right ) + 4 \, \log \left (\log \relax (x)\right )^{2} + x + 28\right )}}{\log \relax (x)^{24}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.14, size = 78, normalized size = 3.25 \begin {gather*} \frac {59604644775390625\,{\mathrm {e}}^{-x\,{\ln \relax (5)}^2}\,{\mathrm {e}}^{28}\,{\mathrm {e}}^{4\,{\ln \left (\ln \relax (x)\right )}^2}\,{\mathrm {e}}^{4\,{\ln \relax (5)}^2}\,{\mathrm {e}}^{-2\,x^2}\,{\mathrm {e}}^x\,{\mathrm {e}}^{-x\,{\ln \left (\ln \relax (x)\right )}^2}\,{\ln \relax (x)}^{6\,x}\,{\ln \relax (x)}^{2\,x\,\ln \relax (5)}}{5^{6\,x}\,{\ln \relax (x)}^{8\,\ln \relax (5)}\,{\ln \relax (x)}^{24}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.88, size = 32, normalized size = 1.33 \begin {gather*} e^{- 2 x^{2} + x + \left (4 - x\right ) \log {\left (\frac {\log {\relax (x )}}{5} \right )}^{2} + \left (6 x - 24\right ) \log {\left (\frac {\log {\relax (x )}}{5} \right )} + 28} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________