Optimal. Leaf size=22 \[ -2+\frac {1}{x}+e^{2+e^x x^4} \left (-2+x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.31, antiderivative size = 69, normalized size of antiderivative = 3.14, number of steps used = 3, number of rules used = 2, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {14, 2288} \begin {gather*} \frac {1}{x}-\frac {e^{e^x x^4+2} x \left (-e^x x^5-4 e^x x^4+2 e^x x^3+8 e^x x^2\right )}{e^x x^4+4 e^x x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{x^2}+e^{2+e^x x^4} x \left (2-8 e^x x^2-2 e^x x^3+4 e^x x^4+e^x x^5\right )\right ) \, dx\\ &=\frac {1}{x}+\int e^{2+e^x x^4} x \left (2-8 e^x x^2-2 e^x x^3+4 e^x x^4+e^x x^5\right ) \, dx\\ &=\frac {1}{x}-\frac {e^{2+e^x x^4} x \left (8 e^x x^2+2 e^x x^3-4 e^x x^4-e^x x^5\right )}{4 e^x x^3+e^x x^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 21, normalized size = 0.95 \begin {gather*} \frac {1}{x}+e^{2+e^x x^4} \left (-2+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 23, normalized size = 1.05 \begin {gather*} \frac {{\left (x^{3} - 2 \, x\right )} e^{\left (x^{4} e^{x} + 2\right )} + 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{3} + {\left (x^{8} + 4 \, x^{7} - 2 \, x^{6} - 8 \, x^{5}\right )} e^{x}\right )} e^{\left (x^{4} e^{x} + 2\right )} - 1}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 20, normalized size = 0.91
method | result | size |
risch | \(\frac {1}{x}+\left (x^{2}-2\right ) {\mathrm e}^{{\mathrm e}^{x} x^{4}+2}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 23, normalized size = 1.05 \begin {gather*} {\left (x^{2} e^{2} - 2 \, e^{2}\right )} e^{\left (x^{4} e^{x}\right )} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.21, size = 19, normalized size = 0.86 \begin {gather*} {\mathrm {e}}^{x^4\,{\mathrm {e}}^x+2}\,\left (x^2-2\right )+\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 17, normalized size = 0.77 \begin {gather*} \left (x^{2} - 2\right ) e^{x^{4} e^{x} + 2} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________