Optimal. Leaf size=23 \[ \frac {e+2 x+x^2+\log \left (\frac {1}{3 e^5 x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 29, normalized size of antiderivative = 1.26, number of steps used = 5, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {14, 2304} \begin {gather*} x+\frac {1+e}{x}-\frac {1}{x}-\frac {-\log \left (\frac {1}{x}\right )+5+\log (3)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1-e+x^2}{x^2}+\frac {5 \left (1+\frac {\log (3)}{5}\right )-\log \left (\frac {1}{x}\right )}{x^2}\right ) \, dx\\ &=\int \frac {-1-e+x^2}{x^2} \, dx+\int \frac {5 \left (1+\frac {\log (3)}{5}\right )-\log \left (\frac {1}{x}\right )}{x^2} \, dx\\ &=-\frac {1}{x}-\frac {5+\log (3)-\log \left (\frac {1}{x}\right )}{x}+\int \left (1+\frac {-1-e}{x^2}\right ) \, dx\\ &=-\frac {1}{x}+\frac {1+e}{x}+x-\frac {5+\log (3)-\log \left (\frac {1}{x}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 27, normalized size = 1.17 \begin {gather*} -\frac {5}{x}+\frac {e}{x}+x-\frac {\log (3)}{x}+\frac {\log \left (\frac {1}{x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 18, normalized size = 0.78 \begin {gather*} \frac {x^{2} + e + \log \left (\frac {e^{\left (-5\right )}}{3 \, x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 0.91 \begin {gather*} x {\left (\frac {e}{x^{2}} - \frac {\log \left (3 \, x e^{5}\right )}{x^{2}} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.91
method | result | size |
norman | \(\frac {x^{2}+{\mathrm e}+\ln \left (\frac {{\mathrm e}^{-5}}{3 x}\right )}{x}\) | \(21\) |
derivativedivides | \(x +\frac {{\mathrm e}}{x}+\frac {\ln \left (\frac {{\mathrm e}^{-5}}{3 x}\right )}{x}\) | \(23\) |
default | \(x +\frac {{\mathrm e}}{x}+\frac {\ln \left (\frac {{\mathrm e}^{-5}}{3 x}\right )}{x}\) | \(23\) |
risch | \(\frac {\ln \left (\frac {{\mathrm e}^{-5}}{3 x}\right )}{x}+\frac {{\mathrm e}+x^{2}}{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 36, normalized size = 1.57 \begin {gather*} {\left (\frac {e^{\left (-5\right )} \log \left (\frac {e^{\left (-5\right )}}{3 \, x}\right )}{x} - \frac {e^{\left (-5\right )}}{x}\right )} e^{5} + x + \frac {e}{x} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.83, size = 17, normalized size = 0.74 \begin {gather*} x+\frac {\ln \left (\frac {{\mathrm {e}}^{-5}}{3\,x}\right )+\mathrm {e}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.74 \begin {gather*} x + \frac {\log {\left (\frac {1}{3 x e^{5}} \right )}}{x} + \frac {e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________