Optimal. Leaf size=35 \[ \frac {e^{e^2} (3-x) \left (-e^{-1+x}+x\right ) \log \left (\frac {5}{x}\right )}{4-x^2} \]
________________________________________________________________________________________
Rubi [B] time = 6.01, antiderivative size = 97, normalized size of antiderivative = 2.77, number of steps used = 81, number of rules used = 22, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.198, Rules used = {1594, 28, 6742, 199, 207, 261, 288, 266, 43, 2323, 2324, 12, 5912, 2335, 260, 2351, 6688, 2177, 2178, 2269, 6725, 2554} \begin {gather*} -\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{x+e^2-1} \log \left (\frac {5}{x}\right )}{4 (2-x)}-\frac {5 e^{x+e^2-1} \log \left (\frac {5}{x}\right )}{4 (x+2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 28
Rule 43
Rule 199
Rule 207
Rule 260
Rule 261
Rule 266
Rule 288
Rule 1594
Rule 2177
Rule 2178
Rule 2269
Rule 2323
Rule 2324
Rule 2335
Rule 2351
Rule 2554
Rule 5912
Rule 6688
Rule 6725
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^2} \left (-12 x+4 x^2+3 x^3-x^4+e^{-1+x} \left (12-4 x-3 x^2+x^3\right )\right )+e^{e^2} \left (12 x-8 x^2+3 x^3+e^{-1+x} \left (-8 x-2 x^2+4 x^3-x^4\right )\right ) \log \left (\frac {5}{x}\right )}{x \left (16-8 x^2+x^4\right )} \, dx\\ &=\int \frac {e^{e^2} \left (-12 x+4 x^2+3 x^3-x^4+e^{-1+x} \left (12-4 x-3 x^2+x^3\right )\right )+e^{e^2} \left (12 x-8 x^2+3 x^3+e^{-1+x} \left (-8 x-2 x^2+4 x^3-x^4\right )\right ) \log \left (\frac {5}{x}\right )}{x \left (-4+x^2\right )^2} \, dx\\ &=\int \left (-\frac {12 e^{e^2}}{\left (-4+x^2\right )^2}+\frac {4 e^{e^2} x}{\left (-4+x^2\right )^2}+\frac {3 e^{e^2} x^2}{\left (-4+x^2\right )^2}-\frac {e^{e^2} x^3}{\left (-4+x^2\right )^2}+\frac {12 e^{e^2} \log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2}-\frac {8 e^{e^2} x \log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2}+\frac {3 e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2}-\frac {e^{-1+e^2+x} \left (-12+4 x+3 x^2-x^3+8 x \log \left (\frac {5}{x}\right )+2 x^2 \log \left (\frac {5}{x}\right )-4 x^3 \log \left (\frac {5}{x}\right )+x^4 \log \left (\frac {5}{x}\right )\right )}{x \left (-4+x^2\right )^2}\right ) \, dx\\ &=-\left (e^{e^2} \int \frac {x^3}{\left (-4+x^2\right )^2} \, dx\right )+\left (3 e^{e^2}\right ) \int \frac {x^2}{\left (-4+x^2\right )^2} \, dx+\left (3 e^{e^2}\right ) \int \frac {x^2 \log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2} \, dx+\left (4 e^{e^2}\right ) \int \frac {x}{\left (-4+x^2\right )^2} \, dx-\left (8 e^{e^2}\right ) \int \frac {x \log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2} \, dx-\left (12 e^{e^2}\right ) \int \frac {1}{\left (-4+x^2\right )^2} \, dx+\left (12 e^{e^2}\right ) \int \frac {\log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2} \, dx-\int \frac {e^{-1+e^2+x} \left (-12+4 x+3 x^2-x^3+8 x \log \left (\frac {5}{x}\right )+2 x^2 \log \left (\frac {5}{x}\right )-4 x^3 \log \left (\frac {5}{x}\right )+x^4 \log \left (\frac {5}{x}\right )\right )}{x \left (-4+x^2\right )^2} \, dx\\ &=\frac {2 e^{e^2}}{4-x^2}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{2 \left (4-x^2\right )}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {1}{2} e^{e^2} \operatorname {Subst}\left (\int \frac {x}{(-4+x)^2} \, dx,x,x^2\right )+e^{e^2} \int \frac {x}{-4+x^2} \, dx+\frac {1}{2} \left (3 e^{e^2}\right ) \int \frac {1}{-4+x^2} \, dx-\frac {1}{2} \left (3 e^{e^2}\right ) \int \frac {\log \left (\frac {5}{x}\right )}{-4+x^2} \, dx+\left (3 e^{e^2}\right ) \int \left (\frac {4 \log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2}+\frac {\log \left (\frac {5}{x}\right )}{-4+x^2}\right ) \, dx-\int \frac {e^{-1+e^2+x} \left (-12+4 x+3 x^2-x^3+x \left (8+2 x-4 x^2+x^3\right ) \log \left (\frac {5}{x}\right )\right )}{x \left (4-x^2\right )^2} \, dx\\ &=\frac {2 e^{e^2}}{4-x^2}-\frac {3}{4} e^{e^2} \tanh ^{-1}\left (\frac {x}{2}\right )+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{2 \left (4-x^2\right )}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}+\frac {3}{4} e^{e^2} \tanh ^{-1}\left (\frac {x}{2}\right ) \log \left (\frac {5}{x}\right )+\frac {1}{2} e^{e^2} \log \left (4-x^2\right )-\frac {1}{2} e^{e^2} \operatorname {Subst}\left (\int \left (\frac {4}{(-4+x)^2}+\frac {1}{-4+x}\right ) \, dx,x,x^2\right )-\frac {1}{2} \left (3 e^{e^2}\right ) \int -\frac {\tanh ^{-1}\left (\frac {x}{2}\right )}{2 x} \, dx+\left (3 e^{e^2}\right ) \int \frac {\log \left (\frac {5}{x}\right )}{-4+x^2} \, dx+\left (12 e^{e^2}\right ) \int \frac {\log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2} \, dx-\int \left (\frac {4 e^{-1+e^2+x}}{\left (-4+x^2\right )^2}-\frac {12 e^{-1+e^2+x}}{x \left (-4+x^2\right )^2}+\frac {3 e^{-1+e^2+x} x}{\left (-4+x^2\right )^2}-\frac {e^{-1+e^2+x} x^2}{\left (-4+x^2\right )^2}+\frac {e^{-1+e^2+x} \left (8+2 x-4 x^2+x^3\right ) \log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2}\right ) \, dx\\ &=-\frac {3}{4} e^{e^2} \tanh ^{-1}\left (\frac {x}{2}\right )+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {3}{4} e^{e^2} \tanh ^{-1}\left (\frac {x}{2}\right ) \log \left (\frac {5}{x}\right )-3 \int \frac {e^{-1+e^2+x} x}{\left (-4+x^2\right )^2} \, dx-4 \int \frac {e^{-1+e^2+x}}{\left (-4+x^2\right )^2} \, dx+12 \int \frac {e^{-1+e^2+x}}{x \left (-4+x^2\right )^2} \, dx+\frac {1}{4} \left (3 e^{e^2}\right ) \int \frac {\tanh ^{-1}\left (\frac {x}{2}\right )}{x} \, dx-\frac {1}{2} \left (3 e^{e^2}\right ) \int \frac {1}{-4+x^2} \, dx-\frac {1}{2} \left (3 e^{e^2}\right ) \int \frac {\log \left (\frac {5}{x}\right )}{-4+x^2} \, dx+\left (3 e^{e^2}\right ) \int -\frac {\tanh ^{-1}\left (\frac {x}{2}\right )}{2 x} \, dx+\int \frac {e^{-1+e^2+x} x^2}{\left (-4+x^2\right )^2} \, dx-\int \frac {e^{-1+e^2+x} \left (8+2 x-4 x^2+x^3\right ) \log \left (\frac {5}{x}\right )}{\left (-4+x^2\right )^2} \, dx\\ &=-\frac {e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2-x)}-\frac {5 e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2+x)}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {3}{8} e^{e^2} \text {Li}_2\left (-\frac {x}{2}\right )+\frac {3}{8} e^{e^2} \text {Li}_2\left (\frac {x}{2}\right )-3 \int \left (\frac {e^{-1+e^2+x}}{8 (-2+x)^2}-\frac {e^{-1+e^2+x}}{8 (2+x)^2}\right ) \, dx-4 \int \left (\frac {e^{-1+e^2+x}}{16 (2-x)^2}+\frac {e^{-1+e^2+x}}{16 (2+x)^2}+\frac {e^{-1+e^2+x}}{8 \left (4-x^2\right )}\right ) \, dx+12 \int \left (\frac {e^{-1+e^2+x}}{32 (-2+x)^2}+\frac {e^{-1+e^2+x}}{16 x}-\frac {e^{-1+e^2+x}}{32 (2+x)^2}-\frac {e^{-1+e^2+x} x}{16 \left (-4+x^2\right )}\right ) \, dx-\frac {1}{2} \left (3 e^{e^2}\right ) \int -\frac {\tanh ^{-1}\left (\frac {x}{2}\right )}{2 x} \, dx-\frac {1}{2} \left (3 e^{e^2}\right ) \int \frac {\tanh ^{-1}\left (\frac {x}{2}\right )}{x} \, dx+\int \frac {e^{-1+e^2+x} (-3+x)}{x \left (4-x^2\right )} \, dx+\int \left (\frac {4 e^{-1+e^2+x}}{\left (-4+x^2\right )^2}+\frac {e^{-1+e^2+x}}{-4+x^2}\right ) \, dx\\ &=-\frac {e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2-x)}-\frac {5 e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2+x)}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}+\frac {3}{8} e^{e^2} \text {Li}_2\left (-\frac {x}{2}\right )-\frac {3}{8} e^{e^2} \text {Li}_2\left (\frac {x}{2}\right )-\frac {1}{4} \int \frac {e^{-1+e^2+x}}{(2-x)^2} \, dx-\frac {1}{4} \int \frac {e^{-1+e^2+x}}{(2+x)^2} \, dx-\frac {1}{2} \int \frac {e^{-1+e^2+x}}{4-x^2} \, dx+\frac {3}{4} \int \frac {e^{-1+e^2+x}}{x} \, dx-\frac {3}{4} \int \frac {e^{-1+e^2+x} x}{-4+x^2} \, dx+4 \int \frac {e^{-1+e^2+x}}{\left (-4+x^2\right )^2} \, dx+\frac {1}{4} \left (3 e^{e^2}\right ) \int \frac {\tanh ^{-1}\left (\frac {x}{2}\right )}{x} \, dx+\int \frac {e^{-1+e^2+x}}{-4+x^2} \, dx+\int \left (\frac {e^{-1+e^2+x}}{8 (-2+x)}-\frac {3 e^{-1+e^2+x}}{4 x}+\frac {5 e^{-1+e^2+x}}{8 (2+x)}\right ) \, dx\\ &=-\frac {e^{-1+e^2+x}}{4 (2-x)}+\frac {e^{-1+e^2+x}}{4 (2+x)}+\frac {3}{4} e^{-1+e^2} \text {Ei}(x)-\frac {e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2-x)}-\frac {5 e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2+x)}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}+\frac {1}{8} \int \frac {e^{-1+e^2+x}}{-2+x} \, dx+\frac {1}{4} \int \frac {e^{-1+e^2+x}}{2-x} \, dx-\frac {1}{4} \int \frac {e^{-1+e^2+x}}{2+x} \, dx-\frac {1}{2} \int \left (\frac {e^{-1+e^2+x}}{4 (2-x)}+\frac {e^{-1+e^2+x}}{4 (2+x)}\right ) \, dx+\frac {5}{8} \int \frac {e^{-1+e^2+x}}{2+x} \, dx-\frac {3}{4} \int \frac {e^{-1+e^2+x}}{x} \, dx-\frac {3}{4} \int \left (\frac {e^{-1+e^2+x}}{2 (-2+x)}+\frac {e^{-1+e^2+x}}{2 (2+x)}\right ) \, dx+4 \int \left (\frac {e^{-1+e^2+x}}{16 (2-x)^2}+\frac {e^{-1+e^2+x}}{16 (2+x)^2}+\frac {e^{-1+e^2+x}}{8 \left (4-x^2\right )}\right ) \, dx+\int \left (-\frac {e^{-1+e^2+x}}{4 (2-x)}-\frac {e^{-1+e^2+x}}{4 (2+x)}\right ) \, dx\\ &=-\frac {e^{-1+e^2+x}}{4 (2-x)}+\frac {e^{-1+e^2+x}}{4 (2+x)}-\frac {1}{8} e^{1+e^2} \text {Ei}(-2+x)+\frac {3}{8} e^{-3+e^2} \text {Ei}(2+x)-\frac {e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2-x)}-\frac {5 e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2+x)}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {1}{8} \int \frac {e^{-1+e^2+x}}{2-x} \, dx-\frac {1}{8} \int \frac {e^{-1+e^2+x}}{2+x} \, dx+\frac {1}{4} \int \frac {e^{-1+e^2+x}}{(2-x)^2} \, dx-\frac {1}{4} \int \frac {e^{-1+e^2+x}}{2-x} \, dx+\frac {1}{4} \int \frac {e^{-1+e^2+x}}{(2+x)^2} \, dx-\frac {1}{4} \int \frac {e^{-1+e^2+x}}{2+x} \, dx-\frac {3}{8} \int \frac {e^{-1+e^2+x}}{-2+x} \, dx-\frac {3}{8} \int \frac {e^{-1+e^2+x}}{2+x} \, dx+\frac {1}{2} \int \frac {e^{-1+e^2+x}}{4-x^2} \, dx\\ &=-\frac {1}{8} e^{1+e^2} \text {Ei}(-2+x)-\frac {3}{8} e^{-3+e^2} \text {Ei}(2+x)-\frac {e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2-x)}-\frac {5 e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2+x)}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {1}{4} \int \frac {e^{-1+e^2+x}}{2-x} \, dx+\frac {1}{4} \int \frac {e^{-1+e^2+x}}{2+x} \, dx+\frac {1}{2} \int \left (\frac {e^{-1+e^2+x}}{4 (2-x)}+\frac {e^{-1+e^2+x}}{4 (2+x)}\right ) \, dx\\ &=\frac {1}{8} e^{1+e^2} \text {Ei}(-2+x)-\frac {1}{8} e^{-3+e^2} \text {Ei}(2+x)-\frac {e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2-x)}-\frac {5 e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2+x)}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}+\frac {1}{8} \int \frac {e^{-1+e^2+x}}{2-x} \, dx+\frac {1}{8} \int \frac {e^{-1+e^2+x}}{2+x} \, dx\\ &=-\frac {e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2-x)}-\frac {5 e^{-1+e^2+x} \log \left (\frac {5}{x}\right )}{4 (2+x)}+\frac {3 e^{e^2} x \log \left (\frac {5}{x}\right )}{4-x^2}-\frac {e^{e^2} x^2 \log \left (\frac {5}{x}\right )}{4-x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.23, size = 44, normalized size = 1.26 \begin {gather*} e^{-1+e^2} \left (-\frac {\left (e^x (-3+x)+e (-4+3 x)\right ) \log \left (\frac {5}{x}\right )}{-4+x^2}-e \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 33, normalized size = 0.94 \begin {gather*} \frac {{\left (x^{2} - {\left (x - 3\right )} e^{\left (x - 1\right )} - 3 \, x\right )} e^{\left (e^{2}\right )} \log \left (\frac {5}{x}\right )}{x^{2} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 77, normalized size = 2.20 \begin {gather*} -\frac {x^{2} e^{\left (e^{2}\right )} \log \relax (x) + x e^{\left (x + e^{2} - 1\right )} \log \left (\frac {5}{x}\right ) + 3 \, x e^{\left (e^{2}\right )} \log \left (\frac {5}{x}\right ) - 4 \, e^{\left (e^{2}\right )} \log \relax (x) - 3 \, e^{\left (x + e^{2} - 1\right )} \log \left (\frac {5}{x}\right ) - 4 \, e^{\left (e^{2}\right )} \log \left (\frac {5}{x}\right )}{x^{2} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.39, size = 82, normalized size = 2.34
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{2}} \left (x \,{\mathrm e}^{x -1}+3 x -3 \,{\mathrm e}^{x -1}-4\right ) \ln \relax (x )}{x^{2}-4}-\frac {{\mathrm e}^{{\mathrm e}^{2}} \left (2 x^{2} \ln \relax (x )+2 \ln \relax (5) x \,{\mathrm e}^{x -1}+6 x \ln \relax (5)-6 \ln \relax (5) {\mathrm e}^{x -1}-8 \ln \relax (x )-8 \ln \relax (5)\right )}{2 \left (x^{2}-4\right )}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 140, normalized size = 4.00 \begin {gather*} \frac {3}{8} \, {\left (\frac {4 \, x}{x^{2} - 4} - \log \left (x + 2\right ) + \log \left (x - 2\right )\right )} e^{\left (e^{2}\right )} + \frac {3}{8} \, e^{\left (e^{2}\right )} \log \left (x + 2\right ) - \frac {3}{8} \, e^{\left (e^{2}\right )} \log \left (x - 2\right ) - \frac {3 \, x {\left (2 \, \log \relax (5) + 1\right )} e^{\left (e^{2} + 1\right )} + 2 \, {\left (x e^{\left (e^{2}\right )} \log \relax (5) - 3 \, e^{\left (e^{2}\right )} \log \relax (5) - {\left (x e^{\left (e^{2}\right )} - 3 \, e^{\left (e^{2}\right )}\right )} \log \relax (x)\right )} e^{x} - 8 \, e^{\left (e^{2} + 1\right )} \log \relax (5) + 2 \, {\left (x^{2} e^{\left (e^{2} + 1\right )} - 3 \, x e^{\left (e^{2} + 1\right )}\right )} \log \relax (x)}{2 \, {\left (x^{2} e - 4 \, e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{{\mathrm {e}}^2}\,\left (12\,x+{\mathrm {e}}^{x-1}\,\left (-x^3+3\,x^2+4\,x-12\right )-4\,x^2-3\,x^3+x^4\right )-{\mathrm {e}}^{{\mathrm {e}}^2}\,\ln \left (\frac {5}{x}\right )\,\left (12\,x-{\mathrm {e}}^{x-1}\,\left (x^4-4\,x^3+2\,x^2+8\,x\right )-8\,x^2+3\,x^3\right )}{x^5-8\,x^3+16\,x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.56, size = 66, normalized size = 1.89 \begin {gather*} - e^{e^{2}} \log {\relax (x )} + \frac {\left (- 3 x e^{e^{2}} + 4 e^{e^{2}}\right ) \log {\left (\frac {5}{x} \right )}}{x^{2} - 4} + \frac {\left (- x e^{e^{2}} \log {\left (\frac {5}{x} \right )} + 3 e^{e^{2}} \log {\left (\frac {5}{x} \right )}\right ) e^{x - 1}}{x^{2} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________