Optimal. Leaf size=32 \[ 3-e^4-e^{e^4-x}-3 x-\log \left (1+\frac {\log (3)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.53, antiderivative size = 24, normalized size of antiderivative = 0.75, number of steps used = 6, number of rules used = 4, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {1593, 6742, 2194, 893} \begin {gather*} -3 x-e^{e^4-x}+\log (x)-\log (x+\log (3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 893
Rule 1593
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 x^2+(1-3 x) \log (3)+e^{e^4-x} \left (x^2+x \log (3)\right )}{x (x+\log (3))} \, dx\\ &=\int \left (e^{e^4-x}+\frac {-3 x^2+\log (3)-3 x \log (3)}{x (x+\log (3))}\right ) \, dx\\ &=\int e^{e^4-x} \, dx+\int \frac {-3 x^2+\log (3)-3 x \log (3)}{x (x+\log (3))} \, dx\\ &=-e^{e^4-x}+\int \left (-3+\frac {1}{x}+\frac {1}{-x-\log (3)}\right ) \, dx\\ &=-e^{e^4-x}-3 x+\log (x)-\log (x+\log (3))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 24, normalized size = 0.75 \begin {gather*} -e^{e^4-x}-3 x+\log (x)-\log (x+\log (3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 22, normalized size = 0.69 \begin {gather*} -3 \, x - e^{\left (-x + e^{4}\right )} - \log \left (x + \log \relax (3)\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 22, normalized size = 0.69 \begin {gather*} -3 \, x - e^{\left (-x + e^{4}\right )} - \log \left (x + \log \relax (3)\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 23, normalized size = 0.72
method | result | size |
norman | \(-3 x -{\mathrm e}^{{\mathrm e}^{4}-x}-\ln \left (\ln \relax (3)+x \right )+\ln \relax (x )\) | \(23\) |
risch | \(-3 x -{\mathrm e}^{{\mathrm e}^{4}-x}-\ln \left (\ln \relax (3)+x \right )+\ln \relax (x )\) | \(23\) |
derivativedivides | \(\frac {2 \ln \relax (3) \arctanh \left (\frac {-\ln \relax (3)-2 x}{\sqrt {\ln \relax (3)^{2}}}\right )}{\sqrt {\ln \relax (3)^{2}}}-{\mathrm e}^{{\mathrm e}^{4}-x}+3 \,{\mathrm e}^{4}-3 x\) | \(466\) |
default | \(\frac {2 \ln \relax (3) \arctanh \left (\frac {-\ln \relax (3)-2 x}{\sqrt {\ln \relax (3)^{2}}}\right )}{\sqrt {\ln \relax (3)^{2}}}-{\mathrm e}^{{\mathrm e}^{4}-x}+3 \,{\mathrm e}^{4}-3 x\) | \(466\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -3 \, e^{\left (e^{4}\right )} E_{1}\left (x + \log \relax (3)\right ) \log \relax (3) - {\left (\frac {\log \left (x + \log \relax (3)\right )}{\log \relax (3)} - \frac {\log \relax (x)}{\log \relax (3)}\right )} \log \relax (3) + \int \frac {e^{\left (-x + e^{4}\right )}}{x^{2} + 2 \, x \log \relax (3) + \log \relax (3)^{2}}\,{d x} \log \relax (3) - 3 \, x - \frac {x e^{\left (-x + e^{4}\right )}}{x + \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.81, size = 22, normalized size = 0.69 \begin {gather*} \ln \relax (x)-{\mathrm {e}}^{{\mathrm {e}}^4-x}-\ln \left (x+\ln \relax (3)\right )-3\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 19, normalized size = 0.59 \begin {gather*} - 3 x - e^{- x + e^{4}} + \log {\relax (x )} - \log {\left (x + \log {\relax (3 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________