Optimal. Leaf size=19 \[ e^{-\left (\left (\frac {1}{2}+e^e-x\right ) x\right )} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 50, normalized size of antiderivative = 2.63, number of steps used = 4, number of rules used = 4, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.085, Rules used = {6, 12, 1594, 2288} \begin {gather*} \frac {e^{\frac {1}{2} \left (2 x^2-2 e^e x-x\right )} x \left (\left (1+2 e^e\right ) x-4 x^2\right )}{-4 x+2 e^e+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1594
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{2} e^{\frac {1}{2} \left (-x-2 e^e x+2 x^2\right )} \left (4 x+\left (-1-2 e^e\right ) x^2+4 x^3\right ) \, dx\\ &=\frac {1}{2} \int e^{\frac {1}{2} \left (-x-2 e^e x+2 x^2\right )} \left (4 x+\left (-1-2 e^e\right ) x^2+4 x^3\right ) \, dx\\ &=\frac {1}{2} \int e^{\frac {1}{2} \left (-x-2 e^e x+2 x^2\right )} x \left (4+\left (-1-2 e^e\right ) x+4 x^2\right ) \, dx\\ &=\frac {e^{\frac {1}{2} \left (-x-2 e^e x+2 x^2\right )} x \left (\left (1+2 e^e\right ) x-4 x^2\right )}{1+2 e^e-4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 21, normalized size = 1.11 \begin {gather*} e^{-\frac {x}{2}-e^e x+x^2} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.86, size = 18, normalized size = 0.95 \begin {gather*} x^{2} e^{\left (x^{2} - x e^{e} - \frac {1}{2} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.18, size = 187, normalized size = 9.84 \begin {gather*} -\frac {1}{32} i \, \sqrt {\pi } {\left (4 \, e^{\left (2 \, e\right )} + 4 \, e^{e} - 7\right )} \operatorname {erf}\left (-i \, x + \frac {1}{2} i \, e^{e} + \frac {1}{4} i\right ) e^{\left (e - \frac {1}{4} \, e^{\left (2 \, e\right )} - \frac {1}{4} \, e^{e} - \frac {1}{16}\right )} + \frac {1}{32} i \, \sqrt {\pi } {\left (4 \, e^{\left (3 \, e\right )} + 4 \, e^{\left (2 \, e\right )} - 7 \, e^{e}\right )} \operatorname {erf}\left (-i \, x + \frac {1}{2} i \, e^{e} + \frac {1}{4} i\right ) e^{\left (-\frac {1}{4} \, e^{\left (2 \, e\right )} - \frac {1}{4} \, e^{e} - \frac {1}{16}\right )} - \frac {1}{8} \, {\left (4 \, x + 2 \, e^{e} + 1\right )} e^{\left (x^{2} - x e^{e} - \frac {1}{2} \, x + e\right )} + \frac {1}{16} \, {\left ({\left (4 \, x - 2 \, e^{e} - 1\right )}^{2} + 6 \, {\left (4 \, x - 2 \, e^{e} - 1\right )} e^{e} + 8 \, x + 12 \, e^{\left (2 \, e\right )} + 4 \, e^{e} - 1\right )} e^{\left (x^{2} - x e^{e} - \frac {1}{2} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 1.00
method | result | size |
risch | \(x^{2} {\mathrm e}^{\frac {x \left (-2 \,{\mathrm e}^{{\mathrm e}}+2 x -1\right )}{2}}\) | \(19\) |
gosper | \(x^{2} {\mathrm e}^{-x \,{\mathrm e}^{{\mathrm e}}+x^{2}-\frac {x}{2}}\) | \(22\) |
norman | \(x^{2} {\mathrm e}^{-x \,{\mathrm e}^{{\mathrm e}}+x^{2}-\frac {x}{2}}\) | \(22\) |
default | \(-\frac {x \,{\mathrm e}^{x^{2}+\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) x}}{4}+\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) \left (\frac {{\mathrm e}^{x^{2}+\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) x}}{2}+\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) \sqrt {\pi }\, {\mathrm e}^{-\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )}{2}\right )}{4}\right )}{4}-\frac {i \sqrt {\pi }\, {\mathrm e}^{-\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )}{2}\right )}{8}+x^{2} {\mathrm e}^{x^{2}+\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) x}-\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) \left (\frac {x \,{\mathrm e}^{x^{2}+\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) x}}{2}-\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) \left (\frac {{\mathrm e}^{x^{2}+\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) x}}{2}+\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) \sqrt {\pi }\, {\mathrm e}^{-\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )}{2}\right )}{4}\right )}{2}+\frac {i \sqrt {\pi }\, {\mathrm e}^{-\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )}{2}\right )}{4}\right )-\frac {x \,{\mathrm e}^{x^{2}+\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) x +{\mathrm e}}}{2}+\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) \left (\frac {{\mathrm e}^{x^{2}+\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) x +{\mathrm e}}}{2}+\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right ) \sqrt {\pi }\, {\mathrm e}^{{\mathrm e}-\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )}{2}\right )}{4}\right )}{2}-\frac {i \sqrt {\pi }\, {\mathrm e}^{{\mathrm e}-\frac {\left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )^{2}}{4}} \erf \left (i x +\frac {i \left (-{\mathrm e}^{{\mathrm e}}-\frac {1}{2}\right )}{2}\right )}{4}\) | \(394\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.48, size = 556, normalized size = 29.26 \begin {gather*} \frac {1}{64} \, {\left (\frac {\sqrt {\pi } {\left (4 \, x - 2 \, e^{e} - 1\right )} {\left (\operatorname {erf}\left (\frac {1}{4} \, \sqrt {-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}}\right ) - 1\right )} {\left (2 \, e^{e} + 1\right )}^{3}}{\sqrt {-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}}} - \frac {48 \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{3} {\left (2 \, e^{e} + 1\right )} \Gamma \left (\frac {3}{2}, -\frac {1}{16} \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )}{\left (-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )^{\frac {3}{2}}} + 12 \, {\left (2 \, e^{e} + 1\right )}^{2} e^{\left (\frac {1}{16} \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )} - 64 \, \Gamma \left (2, -\frac {1}{16} \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )\right )} e^{\left (-\frac {1}{16} \, {\left (2 \, e^{e} + 1\right )}^{2}\right )} - \frac {1}{64} \, {\left (\frac {\sqrt {\pi } {\left (4 \, x - 2 \, e^{e} - 1\right )} {\left (\operatorname {erf}\left (\frac {1}{4} \, \sqrt {-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}}\right ) - 1\right )} {\left (2 \, e^{e} + 1\right )}^{2}}{\sqrt {-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}}} - \frac {16 \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{3} \Gamma \left (\frac {3}{2}, -\frac {1}{16} \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )}{\left (-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )^{\frac {3}{2}}} + 8 \, {\left (2 \, e^{e} + 1\right )} e^{\left (\frac {1}{16} \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{16} \, {\left (2 \, e^{e} + 1\right )}^{2}\right )} + \frac {1}{4} \, {\left (\frac {\sqrt {\pi } {\left (4 \, x - 2 \, e^{e} - 1\right )} {\left (\operatorname {erf}\left (\frac {1}{4} \, \sqrt {-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}}\right ) - 1\right )} {\left (2 \, e^{e} + 1\right )}}{\sqrt {-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}}} + 4 \, e^{\left (\frac {1}{16} \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{16} \, {\left (2 \, e^{e} + 1\right )}^{2}\right )} - \frac {1}{32} \, {\left (\frac {\sqrt {\pi } {\left (4 \, x - 2 \, e^{e} - 1\right )} {\left (\operatorname {erf}\left (\frac {1}{4} \, \sqrt {-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}}\right ) - 1\right )} {\left (2 \, e^{e} + 1\right )}^{2}}{\sqrt {-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}}} - \frac {16 \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{3} \Gamma \left (\frac {3}{2}, -\frac {1}{16} \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )}{\left (-{\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )^{\frac {3}{2}}} + 8 \, {\left (2 \, e^{e} + 1\right )} e^{\left (\frac {1}{16} \, {\left (4 \, x - 2 \, e^{e} - 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{16} \, {\left (2 \, e^{e} + 1\right )}^{2} + e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.58, size = 19, normalized size = 1.00 \begin {gather*} x^2\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{\mathrm {e}}}\,{\mathrm {e}}^{-\frac {x}{2}}\,{\mathrm {e}}^{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 0.89 \begin {gather*} x^{2} e^{x^{2} - x e^{e} - \frac {x}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________