3.78.40
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-5*E^7 + E^6*(-5*E^4 + 20*E^2*x) + E^6*(20*E^2*x + 10*E^4*x)*Log[x] + (-(E^4*x) + E^3*(-2*E^4*x + 8*E^2*x
^2) + E^6*(4*E^4*x + 8*E^2*x^2 - 16*x^3))*Log[x]^2 + (2*E^7*x^2 + E^6*(2*E^4*x^2 - 8*E^2*x^3))*Log[x]^3 - E^10
*x^3*Log[x]^4)/((E^4*x + E^3*(2*E^4*x - 8*E^2*x^2) + E^6*(E^4*x - 8*E^2*x^2 + 16*x^3))*Log[x]^2 + (-2*E^7*x^2
+ E^6*(-2*E^4*x^2 + 8*E^2*x^3))*Log[x]^3 + E^10*x^3*Log[x]^4),x]
[Out]
-x + 5*E^3*Defer[Int][1/(x*(-1 - E^3 + 4*E*x)*Log[x]^2), x] + 20*E^4*Defer[Int][1/((1 + E^3 - 4*E*x)^2*Log[x])
, x] - (5*E^8*Defer[Int][(-1 - E^3 + 4*E*x + E^3*x*Log[x])^(-2), x])/4 + (5*E^6*(4 + E^2 + 4*E^3 + E^5)*Defer[
Int][1/((1 + E^3 - 4*E*x)*(-1 - E^3 + 4*E*x + E^3*x*Log[x])^2), x])/4 - 5*E^6*(1 + E^3)*Defer[Int][1/((1 + E^3
- 4*E*x)^2*(-1 - E^3 + 4*E*x + E^3*x*Log[x])), x] + 5*E^6*Defer[Int][1/((1 + E^3 - 4*E*x)*(-1 - E^3 + 4*E*x +
E^3*x*Log[x])), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 61, normalized size = 2.18
Antiderivative was successfully verified.
[In]
Integrate[(-5*E^7 + E^6*(-5*E^4 + 20*E^2*x) + E^6*(20*E^2*x + 10*E^4*x)*Log[x] + (-(E^4*x) + E^3*(-2*E^4*x + 8
*E^2*x^2) + E^6*(4*E^4*x + 8*E^2*x^2 - 16*x^3))*Log[x]^2 + (2*E^7*x^2 + E^6*(2*E^4*x^2 - 8*E^2*x^3))*Log[x]^3
- E^10*x^3*Log[x]^4)/((E^4*x + E^3*(2*E^4*x - 8*E^2*x^2) + E^6*(E^4*x - 8*E^2*x^2 + 16*x^3))*Log[x]^2 + (-2*E^
7*x^2 + E^6*(-2*E^4*x^2 + 8*E^2*x^3))*Log[x]^3 + E^10*x^3*Log[x]^4),x]
[Out]
-x + (5*E^3)/((1 + E^3 - 4*E*x)*Log[x]) - (5*E^6*x)/((1 + E^3 - 4*E*x)*(-1 - E^3 + 4*E*x + E^3*x*Log[x]))
________________________________________________________________________________________
fricas [B] time = 0.86, size = 61, normalized size = 2.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x^3*exp(2)^2*exp(3)^2*log(x)^4+((2*x^2*exp(2)^2-8*x^3*exp(2))*exp(3)^2+2*x^2*exp(2)^2*exp(3))*log(
x)^3+((4*x*exp(2)^2+8*x^2*exp(2)-16*x^3)*exp(3)^2+(-2*x*exp(2)^2+8*x^2*exp(2))*exp(3)-x*exp(2)^2)*log(x)^2+(10
*x*exp(2)^2+20*exp(2)*x)*exp(3)^2*log(x)+(-5*exp(2)^2+20*exp(2)*x)*exp(3)^2-5*exp(2)^2*exp(3))/(x^3*exp(2)^2*e
xp(3)^2*log(x)^4+((-2*x^2*exp(2)^2+8*x^3*exp(2))*exp(3)^2-2*x^2*exp(2)^2*exp(3))*log(x)^3+((x*exp(2)^2-8*x^2*e
xp(2)+16*x^3)*exp(3)^2+(2*x*exp(2)^2-8*x^2*exp(2))*exp(3)+x*exp(2)^2)*log(x)^2),x, algorithm="fricas")
[Out]
-(x^2*e^3*log(x)^2 + (4*x^2*e - x*e^3 - x)*log(x) + 5*e^3)/(x*e^3*log(x)^2 + (4*x*e - e^3 - 1)*log(x))
________________________________________________________________________________________
giac [B] time = 0.94, size = 66, normalized size = 2.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x^3*exp(2)^2*exp(3)^2*log(x)^4+((2*x^2*exp(2)^2-8*x^3*exp(2))*exp(3)^2+2*x^2*exp(2)^2*exp(3))*log(
x)^3+((4*x*exp(2)^2+8*x^2*exp(2)-16*x^3)*exp(3)^2+(-2*x*exp(2)^2+8*x^2*exp(2))*exp(3)-x*exp(2)^2)*log(x)^2+(10
*x*exp(2)^2+20*exp(2)*x)*exp(3)^2*log(x)+(-5*exp(2)^2+20*exp(2)*x)*exp(3)^2-5*exp(2)^2*exp(3))/(x^3*exp(2)^2*e
xp(3)^2*log(x)^4+((-2*x^2*exp(2)^2+8*x^3*exp(2))*exp(3)^2-2*x^2*exp(2)^2*exp(3))*log(x)^3+((x*exp(2)^2-8*x^2*e
xp(2)+16*x^3)*exp(3)^2+(2*x*exp(2)^2-8*x^2*exp(2))*exp(3)+x*exp(2)^2)*log(x)^2),x, algorithm="giac")
[Out]
-(x^2*e^3*log(x)^2 + 4*x^2*e*log(x) - x*e^3*log(x) - x*log(x) + 5*e^3)/(x*e^3*log(x)^2 + 4*x*e*log(x) - e^3*lo
g(x) - log(x))
________________________________________________________________________________________
maple [A] time = 0.17, size = 32, normalized size = 1.14
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-x^3*exp(2)^2*exp(3)^2*ln(x)^4+((2*x^2*exp(2)^2-8*x^3*exp(2))*exp(3)^2+2*x^2*exp(2)^2*exp(3))*ln(x)^3+((4
*x*exp(2)^2+8*x^2*exp(2)-16*x^3)*exp(3)^2+(-2*x*exp(2)^2+8*x^2*exp(2))*exp(3)-x*exp(2)^2)*ln(x)^2+(10*x*exp(2)
^2+20*exp(2)*x)*exp(3)^2*ln(x)+(-5*exp(2)^2+20*exp(2)*x)*exp(3)^2-5*exp(2)^2*exp(3))/(x^3*exp(2)^2*exp(3)^2*ln
(x)^4+((-2*x^2*exp(2)^2+8*x^3*exp(2))*exp(3)^2-2*x^2*exp(2)^2*exp(3))*ln(x)^3+((x*exp(2)^2-8*x^2*exp(2)+16*x^3
)*exp(3)^2+(2*x*exp(2)^2-8*x^2*exp(2))*exp(3)+x*exp(2)^2)*ln(x)^2),x,method=_RETURNVERBOSE)
[Out]
-x-5*exp(3)/(x*exp(3)*ln(x)-exp(3)+4*x*exp(1)-1)/ln(x)
________________________________________________________________________________________
maxima [B] time = 0.44, size = 60, normalized size = 2.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x^3*exp(2)^2*exp(3)^2*log(x)^4+((2*x^2*exp(2)^2-8*x^3*exp(2))*exp(3)^2+2*x^2*exp(2)^2*exp(3))*log(
x)^3+((4*x*exp(2)^2+8*x^2*exp(2)-16*x^3)*exp(3)^2+(-2*x*exp(2)^2+8*x^2*exp(2))*exp(3)-x*exp(2)^2)*log(x)^2+(10
*x*exp(2)^2+20*exp(2)*x)*exp(3)^2*log(x)+(-5*exp(2)^2+20*exp(2)*x)*exp(3)^2-5*exp(2)^2*exp(3))/(x^3*exp(2)^2*e
xp(3)^2*log(x)^4+((-2*x^2*exp(2)^2+8*x^3*exp(2))*exp(3)^2-2*x^2*exp(2)^2*exp(3))*log(x)^3+((x*exp(2)^2-8*x^2*e
xp(2)+16*x^3)*exp(3)^2+(2*x*exp(2)^2-8*x^2*exp(2))*exp(3)+x*exp(2)^2)*log(x)^2),x, algorithm="maxima")
[Out]
-(x^2*e^3*log(x)^2 + (4*x^2*e - x*(e^3 + 1))*log(x) + 5*e^3)/(x*e^3*log(x)^2 + (4*x*e - e^3 - 1)*log(x))
________________________________________________________________________________________
mupad [B] time = 5.76, size = 34, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(5*exp(7) + exp(6)*(5*exp(4) - 20*x*exp(2)) + log(x)^2*(x*exp(4) - exp(6)*(4*x*exp(4) + 8*x^2*exp(2) - 16
*x^3) + exp(3)*(2*x*exp(4) - 8*x^2*exp(2))) + log(x)^3*(exp(6)*(8*x^3*exp(2) - 2*x^2*exp(4)) - 2*x^2*exp(7)) -
exp(6)*log(x)*(20*x*exp(2) + 10*x*exp(4)) + x^3*exp(10)*log(x)^4)/(log(x)^2*(exp(6)*(x*exp(4) - 8*x^2*exp(2)
+ 16*x^3) + x*exp(4) + exp(3)*(2*x*exp(4) - 8*x^2*exp(2))) + log(x)^3*(exp(6)*(8*x^3*exp(2) - 2*x^2*exp(4)) -
2*x^2*exp(7)) + x^3*exp(10)*log(x)^4),x)
[Out]
- x - 5/(x*(log(x)^2 - (exp(-3)*log(x)*(exp(3) - 4*x*exp(1) + 1))/x))
________________________________________________________________________________________
sympy [A] time = 0.33, size = 32, normalized size = 1.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x**3*exp(2)**2*exp(3)**2*ln(x)**4+((2*x**2*exp(2)**2-8*x**3*exp(2))*exp(3)**2+2*x**2*exp(2)**2*exp
(3))*ln(x)**3+((4*x*exp(2)**2+8*x**2*exp(2)-16*x**3)*exp(3)**2+(-2*x*exp(2)**2+8*x**2*exp(2))*exp(3)-x*exp(2)*
*2)*ln(x)**2+(10*x*exp(2)**2+20*exp(2)*x)*exp(3)**2*ln(x)+(-5*exp(2)**2+20*exp(2)*x)*exp(3)**2-5*exp(2)**2*exp
(3))/(x**3*exp(2)**2*exp(3)**2*ln(x)**4+((-2*x**2*exp(2)**2+8*x**3*exp(2))*exp(3)**2-2*x**2*exp(2)**2*exp(3))*
ln(x)**3+((x*exp(2)**2-8*x**2*exp(2)+16*x**3)*exp(3)**2+(2*x*exp(2)**2-8*x**2*exp(2))*exp(3)+x*exp(2)**2)*ln(x
)**2),x)
[Out]
-x - 5*exp(3)/(x*exp(3)*log(x)**2 + (4*E*x - exp(3) - 1)*log(x))
________________________________________________________________________________________