3.78.40 5e7+e6(5e4+20e2x)+e6(20e2x+10e4x)log(x)+(e4x+e3(2e4x+8e2x2)+e6(4e4x+8e2x216x3))log2(x)+(2e7x2+e6(2e4x28e2x3))log3(x)e10x3log4(x)(e4x+e3(2e4x8e2x2)+e6(e4x8e2x2+16x3))log2(x)+(2e7x2+e6(2e4x2+8e2x3))log3(x)+e10x3log4(x)dx

Optimal. Leaf size=28 x+5log(x)(1+1e3x(4e2+log(x)))

________________________________________________________________________________________

Rubi [F]  time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 5e7+e6(5e4+20e2x)+e6(20e2x+10e4x)log(x)+(e4x+e3(2e4x+8e2x2)+e6(4e4x+8e2x216x3))log2(x)+(2e7x2+e6(2e4x28e2x3))log3(x)e10x3log4(x)(e4x+e3(2e4x8e2x2)+e6(e4x8e2x2+16x3))log2(x)+(2e7x2+e6(2e4x2+8e2x3))log3(x)+e10x3log4(x)dx

Verification is not applicable to the result.

[In]

Int[(-5*E^7 + E^6*(-5*E^4 + 20*E^2*x) + E^6*(20*E^2*x + 10*E^4*x)*Log[x] + (-(E^4*x) + E^3*(-2*E^4*x + 8*E^2*x
^2) + E^6*(4*E^4*x + 8*E^2*x^2 - 16*x^3))*Log[x]^2 + (2*E^7*x^2 + E^6*(2*E^4*x^2 - 8*E^2*x^3))*Log[x]^3 - E^10
*x^3*Log[x]^4)/((E^4*x + E^3*(2*E^4*x - 8*E^2*x^2) + E^6*(E^4*x - 8*E^2*x^2 + 16*x^3))*Log[x]^2 + (-2*E^7*x^2
+ E^6*(-2*E^4*x^2 + 8*E^2*x^3))*Log[x]^3 + E^10*x^3*Log[x]^4),x]

[Out]

-x + 5*E^3*Defer[Int][1/(x*(-1 - E^3 + 4*E*x)*Log[x]^2), x] + 20*E^4*Defer[Int][1/((1 + E^3 - 4*E*x)^2*Log[x])
, x] - (5*E^8*Defer[Int][(-1 - E^3 + 4*E*x + E^3*x*Log[x])^(-2), x])/4 + (5*E^6*(4 + E^2 + 4*E^3 + E^5)*Defer[
Int][1/((1 + E^3 - 4*E*x)*(-1 - E^3 + 4*E*x + E^3*x*Log[x])^2), x])/4 - 5*E^6*(1 + E^3)*Defer[Int][1/((1 + E^3
 - 4*E*x)^2*(-1 - E^3 + 4*E*x + E^3*x*Log[x])), x] + 5*E^6*Defer[Int][1/((1 + E^3 - 4*E*x)*(-1 - E^3 + 4*E*x +
 E^3*x*Log[x])), x]

Rubi steps

integral=5e3(1+e34ex)+10e4(2+e2)xlog(x)x(1+2e34e68ex8e4x+16e2x2)log2(x)+2e3x2(1+e34ex)log3(x)e6x3log4(x)xlog2(x)(1+e34exe3xlog(x))2dx=(1+5e3x(1e3+4ex)log2(x)+20e4(1+e34ex)2log(x)+5(e6+e9+e9x)(1+e34ex)(1e3+4ex+e3xlog(x))220e7x(1+e34ex)2(1e3+4ex+e3xlog(x)))dx=x+5e6+e9+e9x(1+e34ex)(1e3+4ex+e3xlog(x))2dx+(5e3)1x(1e3+4ex)log2(x)dx+(20e4)1(1+e34ex)2log(x)dx(20e7)x(1+e34ex)2(1e3+4ex+e3xlog(x))dx=x+5(e84(1e3+4ex+e3xlog(x))2+e6(4+e2+4e3+e5)4(1+e34ex)(1e3+4ex+e3xlog(x))2)dx+(5e3)1x(1e3+4ex)log2(x)dx+(20e4)1(1+e34ex)2log(x)dx(20e7)(1+e34e(1+e34ex)2(1e3+4ex+e3xlog(x))14e(1+e34ex)(1e3+4ex+e3xlog(x)))dx=x+(5e3)1x(1e3+4ex)log2(x)dx+(20e4)1(1+e34ex)2log(x)dx+(5e6)1(1+e34ex)(1e3+4ex+e3xlog(x))dx14(5e8)1(1e3+4ex+e3xlog(x))2dx(5e6(1+e3))1(1+e34ex)2(1e3+4ex+e3xlog(x))dx+14(5e6(4+e2+4e3+e5))1(1+e34ex)(1e3+4ex+e3xlog(x))2dx

________________________________________________________________________________________

Mathematica [B]  time = 0.09, size = 61, normalized size = 2.18 x+5e3(1+e34ex)log(x)5e6x(1+e34ex)(1e3+4ex+e3xlog(x))

Antiderivative was successfully verified.

[In]

Integrate[(-5*E^7 + E^6*(-5*E^4 + 20*E^2*x) + E^6*(20*E^2*x + 10*E^4*x)*Log[x] + (-(E^4*x) + E^3*(-2*E^4*x + 8
*E^2*x^2) + E^6*(4*E^4*x + 8*E^2*x^2 - 16*x^3))*Log[x]^2 + (2*E^7*x^2 + E^6*(2*E^4*x^2 - 8*E^2*x^3))*Log[x]^3
- E^10*x^3*Log[x]^4)/((E^4*x + E^3*(2*E^4*x - 8*E^2*x^2) + E^6*(E^4*x - 8*E^2*x^2 + 16*x^3))*Log[x]^2 + (-2*E^
7*x^2 + E^6*(-2*E^4*x^2 + 8*E^2*x^3))*Log[x]^3 + E^10*x^3*Log[x]^4),x]

[Out]

-x + (5*E^3)/((1 + E^3 - 4*E*x)*Log[x]) - (5*E^6*x)/((1 + E^3 - 4*E*x)*(-1 - E^3 + 4*E*x + E^3*x*Log[x]))

________________________________________________________________________________________

fricas [B]  time = 0.86, size = 61, normalized size = 2.18 x2e3log(x)2+(4x2exe3x)log(x)+5e3xe3log(x)2+(4xee31)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3*exp(2)^2*exp(3)^2*log(x)^4+((2*x^2*exp(2)^2-8*x^3*exp(2))*exp(3)^2+2*x^2*exp(2)^2*exp(3))*log(
x)^3+((4*x*exp(2)^2+8*x^2*exp(2)-16*x^3)*exp(3)^2+(-2*x*exp(2)^2+8*x^2*exp(2))*exp(3)-x*exp(2)^2)*log(x)^2+(10
*x*exp(2)^2+20*exp(2)*x)*exp(3)^2*log(x)+(-5*exp(2)^2+20*exp(2)*x)*exp(3)^2-5*exp(2)^2*exp(3))/(x^3*exp(2)^2*e
xp(3)^2*log(x)^4+((-2*x^2*exp(2)^2+8*x^3*exp(2))*exp(3)^2-2*x^2*exp(2)^2*exp(3))*log(x)^3+((x*exp(2)^2-8*x^2*e
xp(2)+16*x^3)*exp(3)^2+(2*x*exp(2)^2-8*x^2*exp(2))*exp(3)+x*exp(2)^2)*log(x)^2),x, algorithm="fricas")

[Out]

-(x^2*e^3*log(x)^2 + (4*x^2*e - x*e^3 - x)*log(x) + 5*e^3)/(x*e^3*log(x)^2 + (4*x*e - e^3 - 1)*log(x))

________________________________________________________________________________________

giac [B]  time = 0.94, size = 66, normalized size = 2.36 x2e3log(x)2+4x2elog(x)xe3log(x)xlog(x)+5e3xe3log(x)2+4xelog(x)e3log(x)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3*exp(2)^2*exp(3)^2*log(x)^4+((2*x^2*exp(2)^2-8*x^3*exp(2))*exp(3)^2+2*x^2*exp(2)^2*exp(3))*log(
x)^3+((4*x*exp(2)^2+8*x^2*exp(2)-16*x^3)*exp(3)^2+(-2*x*exp(2)^2+8*x^2*exp(2))*exp(3)-x*exp(2)^2)*log(x)^2+(10
*x*exp(2)^2+20*exp(2)*x)*exp(3)^2*log(x)+(-5*exp(2)^2+20*exp(2)*x)*exp(3)^2-5*exp(2)^2*exp(3))/(x^3*exp(2)^2*e
xp(3)^2*log(x)^4+((-2*x^2*exp(2)^2+8*x^3*exp(2))*exp(3)^2-2*x^2*exp(2)^2*exp(3))*log(x)^3+((x*exp(2)^2-8*x^2*e
xp(2)+16*x^3)*exp(3)^2+(2*x*exp(2)^2-8*x^2*exp(2))*exp(3)+x*exp(2)^2)*log(x)^2),x, algorithm="giac")

[Out]

-(x^2*e^3*log(x)^2 + 4*x^2*e*log(x) - x*e^3*log(x) - x*log(x) + 5*e^3)/(x*e^3*log(x)^2 + 4*x*e*log(x) - e^3*lo
g(x) - log(x))

________________________________________________________________________________________

maple [A]  time = 0.17, size = 32, normalized size = 1.14




method result size



risch x5e3(xe3ln(x)e3+4xe1)ln(x) 32
norman e4e3(e6+2e3+1)ln(x)4+(e3e44e44)xln(x)25e2e34x2e3ln(x)e2ln(x)2e3x2ln(x)(e3e2xln(x)e2e3+4xe3e2) 104



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^3*exp(2)^2*exp(3)^2*ln(x)^4+((2*x^2*exp(2)^2-8*x^3*exp(2))*exp(3)^2+2*x^2*exp(2)^2*exp(3))*ln(x)^3+((4
*x*exp(2)^2+8*x^2*exp(2)-16*x^3)*exp(3)^2+(-2*x*exp(2)^2+8*x^2*exp(2))*exp(3)-x*exp(2)^2)*ln(x)^2+(10*x*exp(2)
^2+20*exp(2)*x)*exp(3)^2*ln(x)+(-5*exp(2)^2+20*exp(2)*x)*exp(3)^2-5*exp(2)^2*exp(3))/(x^3*exp(2)^2*exp(3)^2*ln
(x)^4+((-2*x^2*exp(2)^2+8*x^3*exp(2))*exp(3)^2-2*x^2*exp(2)^2*exp(3))*ln(x)^3+((x*exp(2)^2-8*x^2*exp(2)+16*x^3
)*exp(3)^2+(2*x*exp(2)^2-8*x^2*exp(2))*exp(3)+x*exp(2)^2)*ln(x)^2),x,method=_RETURNVERBOSE)

[Out]

-x-5*exp(3)/(x*exp(3)*ln(x)-exp(3)+4*x*exp(1)-1)/ln(x)

________________________________________________________________________________________

maxima [B]  time = 0.44, size = 60, normalized size = 2.14 x2e3log(x)2+(4x2ex(e3+1))log(x)+5e3xe3log(x)2+(4xee31)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3*exp(2)^2*exp(3)^2*log(x)^4+((2*x^2*exp(2)^2-8*x^3*exp(2))*exp(3)^2+2*x^2*exp(2)^2*exp(3))*log(
x)^3+((4*x*exp(2)^2+8*x^2*exp(2)-16*x^3)*exp(3)^2+(-2*x*exp(2)^2+8*x^2*exp(2))*exp(3)-x*exp(2)^2)*log(x)^2+(10
*x*exp(2)^2+20*exp(2)*x)*exp(3)^2*log(x)+(-5*exp(2)^2+20*exp(2)*x)*exp(3)^2-5*exp(2)^2*exp(3))/(x^3*exp(2)^2*e
xp(3)^2*log(x)^4+((-2*x^2*exp(2)^2+8*x^3*exp(2))*exp(3)^2-2*x^2*exp(2)^2*exp(3))*log(x)^3+((x*exp(2)^2-8*x^2*e
xp(2)+16*x^3)*exp(3)^2+(2*x*exp(2)^2-8*x^2*exp(2))*exp(3)+x*exp(2)^2)*log(x)^2),x, algorithm="maxima")

[Out]

-(x^2*e^3*log(x)^2 + (4*x^2*e - x*(e^3 + 1))*log(x) + 5*e^3)/(x*e^3*log(x)^2 + (4*x*e - e^3 - 1)*log(x))

________________________________________________________________________________________

mupad [B]  time = 5.76, size = 34, normalized size = 1.21 x5x(ln(x)2e3ln(x)(e34xe+1)x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(5*exp(7) + exp(6)*(5*exp(4) - 20*x*exp(2)) + log(x)^2*(x*exp(4) - exp(6)*(4*x*exp(4) + 8*x^2*exp(2) - 16
*x^3) + exp(3)*(2*x*exp(4) - 8*x^2*exp(2))) + log(x)^3*(exp(6)*(8*x^3*exp(2) - 2*x^2*exp(4)) - 2*x^2*exp(7)) -
 exp(6)*log(x)*(20*x*exp(2) + 10*x*exp(4)) + x^3*exp(10)*log(x)^4)/(log(x)^2*(exp(6)*(x*exp(4) - 8*x^2*exp(2)
+ 16*x^3) + x*exp(4) + exp(3)*(2*x*exp(4) - 8*x^2*exp(2))) + log(x)^3*(exp(6)*(8*x^3*exp(2) - 2*x^2*exp(4)) -
2*x^2*exp(7)) + x^3*exp(10)*log(x)^4),x)

[Out]

- x - 5/(x*(log(x)^2 - (exp(-3)*log(x)*(exp(3) - 4*x*exp(1) + 1))/x))

________________________________________________________________________________________

sympy [A]  time = 0.33, size = 32, normalized size = 1.14 x5e3xe3log(x)2+(4exe31)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**3*exp(2)**2*exp(3)**2*ln(x)**4+((2*x**2*exp(2)**2-8*x**3*exp(2))*exp(3)**2+2*x**2*exp(2)**2*exp
(3))*ln(x)**3+((4*x*exp(2)**2+8*x**2*exp(2)-16*x**3)*exp(3)**2+(-2*x*exp(2)**2+8*x**2*exp(2))*exp(3)-x*exp(2)*
*2)*ln(x)**2+(10*x*exp(2)**2+20*exp(2)*x)*exp(3)**2*ln(x)+(-5*exp(2)**2+20*exp(2)*x)*exp(3)**2-5*exp(2)**2*exp
(3))/(x**3*exp(2)**2*exp(3)**2*ln(x)**4+((-2*x**2*exp(2)**2+8*x**3*exp(2))*exp(3)**2-2*x**2*exp(2)**2*exp(3))*
ln(x)**3+((x*exp(2)**2-8*x**2*exp(2)+16*x**3)*exp(3)**2+(2*x*exp(2)**2-8*x**2*exp(2))*exp(3)+x*exp(2)**2)*ln(x
)**2),x)

[Out]

-x - 5*exp(3)/(x*exp(3)*log(x)**2 + (4*E*x - exp(3) - 1)*log(x))

________________________________________________________________________________________