Optimal. Leaf size=28 \[ -x+\frac {5}{\log (x) \left (1+\frac {1}{e^3}-x \left (\frac {4}{e^2}+\log (x)\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 e^7+e^6 \left (-5 e^4+20 e^2 x\right )+e^6 \left (20 e^2 x+10 e^4 x\right ) \log (x)+\left (-e^4 x+e^3 \left (-2 e^4 x+8 e^2 x^2\right )+e^6 \left (4 e^4 x+8 e^2 x^2-16 x^3\right )\right ) \log ^2(x)+\left (2 e^7 x^2+e^6 \left (2 e^4 x^2-8 e^2 x^3\right )\right ) \log ^3(x)-e^{10} x^3 \log ^4(x)}{\left (e^4 x+e^3 \left (2 e^4 x-8 e^2 x^2\right )+e^6 \left (e^4 x-8 e^2 x^2+16 x^3\right )\right ) \log ^2(x)+\left (-2 e^7 x^2+e^6 \left (-2 e^4 x^2+8 e^2 x^3\right )\right ) \log ^3(x)+e^{10} x^3 \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 e^3 \left (1+e^3-4 e x\right )+10 e^4 \left (2+e^2\right ) x \log (x)-x \left (1+2 e^3-4 e^6-8 e x-8 e^4 x+16 e^2 x^2\right ) \log ^2(x)+2 e^3 x^2 \left (1+e^3-4 e x\right ) \log ^3(x)-e^6 x^3 \log ^4(x)}{x \log ^2(x) \left (1+e^3-4 e x-e^3 x \log (x)\right )^2} \, dx\\ &=\int \left (-1+\frac {5 e^3}{x \left (-1-e^3+4 e x\right ) \log ^2(x)}+\frac {20 e^4}{\left (1+e^3-4 e x\right )^2 \log (x)}+\frac {5 \left (e^6+e^9+e^9 x\right )}{\left (1+e^3-4 e x\right ) \left (-1-e^3+4 e x+e^3 x \log (x)\right )^2}-\frac {20 e^7 x}{\left (1+e^3-4 e x\right )^2 \left (-1-e^3+4 e x+e^3 x \log (x)\right )}\right ) \, dx\\ &=-x+5 \int \frac {e^6+e^9+e^9 x}{\left (1+e^3-4 e x\right ) \left (-1-e^3+4 e x+e^3 x \log (x)\right )^2} \, dx+\left (5 e^3\right ) \int \frac {1}{x \left (-1-e^3+4 e x\right ) \log ^2(x)} \, dx+\left (20 e^4\right ) \int \frac {1}{\left (1+e^3-4 e x\right )^2 \log (x)} \, dx-\left (20 e^7\right ) \int \frac {x}{\left (1+e^3-4 e x\right )^2 \left (-1-e^3+4 e x+e^3 x \log (x)\right )} \, dx\\ &=-x+5 \int \left (-\frac {e^8}{4 \left (-1-e^3+4 e x+e^3 x \log (x)\right )^2}+\frac {e^6 \left (4+e^2+4 e^3+e^5\right )}{4 \left (1+e^3-4 e x\right ) \left (-1-e^3+4 e x+e^3 x \log (x)\right )^2}\right ) \, dx+\left (5 e^3\right ) \int \frac {1}{x \left (-1-e^3+4 e x\right ) \log ^2(x)} \, dx+\left (20 e^4\right ) \int \frac {1}{\left (1+e^3-4 e x\right )^2 \log (x)} \, dx-\left (20 e^7\right ) \int \left (\frac {1+e^3}{4 e \left (1+e^3-4 e x\right )^2 \left (-1-e^3+4 e x+e^3 x \log (x)\right )}-\frac {1}{4 e \left (1+e^3-4 e x\right ) \left (-1-e^3+4 e x+e^3 x \log (x)\right )}\right ) \, dx\\ &=-x+\left (5 e^3\right ) \int \frac {1}{x \left (-1-e^3+4 e x\right ) \log ^2(x)} \, dx+\left (20 e^4\right ) \int \frac {1}{\left (1+e^3-4 e x\right )^2 \log (x)} \, dx+\left (5 e^6\right ) \int \frac {1}{\left (1+e^3-4 e x\right ) \left (-1-e^3+4 e x+e^3 x \log (x)\right )} \, dx-\frac {1}{4} \left (5 e^8\right ) \int \frac {1}{\left (-1-e^3+4 e x+e^3 x \log (x)\right )^2} \, dx-\left (5 e^6 \left (1+e^3\right )\right ) \int \frac {1}{\left (1+e^3-4 e x\right )^2 \left (-1-e^3+4 e x+e^3 x \log (x)\right )} \, dx+\frac {1}{4} \left (5 e^6 \left (4+e^2+4 e^3+e^5\right )\right ) \int \frac {1}{\left (1+e^3-4 e x\right ) \left (-1-e^3+4 e x+e^3 x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 61, normalized size = 2.18 \begin {gather*} -x+\frac {5 e^3}{\left (1+e^3-4 e x\right ) \log (x)}-\frac {5 e^6 x}{\left (1+e^3-4 e x\right ) \left (-1-e^3+4 e x+e^3 x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.86, size = 61, normalized size = 2.18 \begin {gather*} -\frac {x^{2} e^{3} \log \relax (x)^{2} + {\left (4 \, x^{2} e - x e^{3} - x\right )} \log \relax (x) + 5 \, e^{3}}{x e^{3} \log \relax (x)^{2} + {\left (4 \, x e - e^{3} - 1\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.94, size = 66, normalized size = 2.36 \begin {gather*} -\frac {x^{2} e^{3} \log \relax (x)^{2} + 4 \, x^{2} e \log \relax (x) - x e^{3} \log \relax (x) - x \log \relax (x) + 5 \, e^{3}}{x e^{3} \log \relax (x)^{2} + 4 \, x e \log \relax (x) - e^{3} \log \relax (x) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 32, normalized size = 1.14
method | result | size |
risch | \(-x -\frac {5 \,{\mathrm e}^{3}}{\left (x \,{\mathrm e}^{3} \ln \relax (x )-{\mathrm e}^{3}+4 x \,{\mathrm e}-1\right ) \ln \relax (x )}\) | \(32\) |
norman | \(\frac {\frac {{\mathrm e}^{4} {\mathrm e}^{-3} \left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) \ln \relax (x )}{4}+\left (-\frac {{\mathrm e}^{3} {\mathrm e}^{4}}{4}-\frac {{\mathrm e}^{4}}{4}\right ) x \ln \relax (x )^{2}-5 \,{\mathrm e}^{2} {\mathrm e}^{3}-4 x^{2} {\mathrm e}^{3} \ln \relax (x )-{\mathrm e}^{2} \ln \relax (x )^{2} {\mathrm e}^{3} x^{2}}{\ln \relax (x ) \left ({\mathrm e}^{3} {\mathrm e}^{2} x \ln \relax (x )-{\mathrm e}^{2} {\mathrm e}^{3}+4 x \,{\mathrm e}^{3}-{\mathrm e}^{2}\right )}\) | \(104\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 60, normalized size = 2.14 \begin {gather*} -\frac {x^{2} e^{3} \log \relax (x)^{2} + {\left (4 \, x^{2} e - x {\left (e^{3} + 1\right )}\right )} \log \relax (x) + 5 \, e^{3}}{x e^{3} \log \relax (x)^{2} + {\left (4 \, x e - e^{3} - 1\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.76, size = 34, normalized size = 1.21 \begin {gather*} -x-\frac {5}{x\,\left ({\ln \relax (x)}^2-\frac {{\mathrm {e}}^{-3}\,\ln \relax (x)\,\left ({\mathrm {e}}^3-4\,x\,\mathrm {e}+1\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 32, normalized size = 1.14 \begin {gather*} - x - \frac {5 e^{3}}{x e^{3} \log {\relax (x )}^{2} + \left (4 e x - e^{3} - 1\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________