Optimal. Leaf size=28 \[ e^{\left (\frac {3}{5}+x\right ) \left (-e^{e^3}-4 (1-x)+x-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{5} \left (-12+e^{e^3} (-3-5 x)-5 x+25 x^2+(-3-5 x) \log (x)\right )\right ) \left (-3-10 x-5 e^{e^3} x+50 x^2-5 x \log (x)\right )}{5 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {1}{5} \left (-12+e^{e^3} (-3-5 x)-5 x+25 x^2+(-3-5 x) \log (x)\right )\right ) \left (-3+\left (-10-5 e^{e^3}\right ) x+50 x^2-5 x \log (x)\right )}{5 x} \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (\frac {1}{5} \left (-12+e^{e^3} (-3-5 x)-5 x+25 x^2+(-3-5 x) \log (x)\right )\right ) \left (-3+\left (-10-5 e^{e^3}\right ) x+50 x^2-5 x \log (x)\right )}{x} \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \left (-3+\left (-10-5 e^{e^3}\right ) x+50 x^2-5 x \log (x)\right )}{x} \, dx\\ &=\frac {1}{5} \int \left (\frac {\exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \left (-3-5 \left (2+e^{e^3}\right ) x+50 x^2\right )}{x}-5 \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \log (x)\right ) \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \left (-3-5 \left (2+e^{e^3}\right ) x+50 x^2\right )}{x} \, dx-\int \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \log (x) \, dx\\ &=\frac {1}{5} \int \left (-5 \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \left (2+e^{e^3}\right )-\frac {3 \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right )}{x}+50 \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) x\right ) \, dx-\int \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \log (x) \, dx\\ &=-\left (\frac {3}{5} \int \frac {\exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right )}{x} \, dx\right )+10 \int \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) x \, dx+\left (-2-e^{e^3}\right ) \int \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \, dx-\int \exp \left (\frac {1}{5} (3+5 x) \left (-4 \left (1+\frac {e^{e^3}}{4}\right )+5 x-\log (x)\right )\right ) \log (x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.72, size = 31, normalized size = 1.11 \begin {gather*} e^{-\frac {1}{5} \left (4+e^{e^3}-5 x\right ) (3+5 x)} x^{-\frac {3}{5}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 30, normalized size = 1.07 \begin {gather*} e^{\left (5 \, x^{2} - \frac {1}{5} \, {\left (5 \, x + 3\right )} e^{\left (e^{3}\right )} - \frac {1}{5} \, {\left (5 \, x + 3\right )} \log \relax (x) - x - \frac {12}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 31, normalized size = 1.11 \begin {gather*} e^{\left (5 \, x^{2} - x e^{\left (e^{3}\right )} - x \log \relax (x) - x - \frac {3}{5} \, e^{\left (e^{3}\right )} - \frac {3}{5} \, \log \relax (x) - \frac {12}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 27, normalized size = 0.96
method | result | size |
risch | \(x^{-\frac {3}{5}-x} {\mathrm e}^{\frac {\left (5 x +3\right ) \left (5 x -{\mathrm e}^{{\mathrm e}^{3}}-4\right )}{5}}\) | \(27\) |
norman | \({\mathrm e}^{\frac {\left (-5 x -3\right ) \ln \relax (x )}{5}+\frac {\left (-5 x -3\right ) {\mathrm e}^{{\mathrm e}^{3}}}{5}+5 x^{2}-x -\frac {12}{5}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{5} \, \int \frac {{\left (50 \, x^{2} - 5 \, x e^{\left (e^{3}\right )} - 5 \, x \log \relax (x) - 10 \, x - 3\right )} e^{\left (5 \, x^{2} - \frac {1}{5} \, {\left (5 \, x + 3\right )} e^{\left (e^{3}\right )} - \frac {1}{5} \, {\left (5 \, x + 3\right )} \log \relax (x) - x - \frac {12}{5}\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.40, size = 33, normalized size = 1.18 \begin {gather*} \frac {{\mathrm {e}}^{-x\,{\mathrm {e}}^{{\mathrm {e}}^3}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-\frac {12}{5}}\,{\mathrm {e}}^{-\frac {3\,{\mathrm {e}}^{{\mathrm {e}}^3}}{5}}\,{\mathrm {e}}^{5\,x^2}}{x^{x+\frac {3}{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 32, normalized size = 1.14 \begin {gather*} e^{5 x^{2} - x + \left (- x - \frac {3}{5}\right ) \log {\relax (x )} + \left (- x - \frac {3}{5}\right ) e^{e^{3}} - \frac {12}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________