Optimal. Leaf size=24 \[ 2 (2-x) \left (4+\frac {4}{x^3 (-x+x \log (x))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.59, antiderivative size = 30, normalized size of antiderivative = 1.25, number of steps used = 18, number of rules used = 7, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {6741, 12, 6742, 2353, 2306, 2309, 2178} \begin {gather*} -\frac {16}{x^4 (1-\log (x))}+\frac {8}{x^3 (1-\log (x))}-8 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 2353
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \left (6-2 x-x^5-8 \log (x)+3 x \log (x)+2 x^5 \log (x)-x^5 \log ^2(x)\right )}{x^5 (1-\log (x))^2} \, dx\\ &=8 \int \frac {6-2 x-x^5-8 \log (x)+3 x \log (x)+2 x^5 \log (x)-x^5 \log ^2(x)}{x^5 (1-\log (x))^2} \, dx\\ &=8 \int \left (-1+\frac {-2+x}{x^5 (-1+\log (x))^2}+\frac {-8+3 x}{x^5 (-1+\log (x))}\right ) \, dx\\ &=-8 x+8 \int \frac {-2+x}{x^5 (-1+\log (x))^2} \, dx+8 \int \frac {-8+3 x}{x^5 (-1+\log (x))} \, dx\\ &=-8 x+8 \int \left (-\frac {2}{x^5 (-1+\log (x))^2}+\frac {1}{x^4 (-1+\log (x))^2}\right ) \, dx+8 \int \left (-\frac {8}{x^5 (-1+\log (x))}+\frac {3}{x^4 (-1+\log (x))}\right ) \, dx\\ &=-8 x+8 \int \frac {1}{x^4 (-1+\log (x))^2} \, dx-16 \int \frac {1}{x^5 (-1+\log (x))^2} \, dx+24 \int \frac {1}{x^4 (-1+\log (x))} \, dx-64 \int \frac {1}{x^5 (-1+\log (x))} \, dx\\ &=-8 x-\frac {16}{x^4 (1-\log (x))}+\frac {8}{x^3 (1-\log (x))}-24 \int \frac {1}{x^4 (-1+\log (x))} \, dx+24 \operatorname {Subst}\left (\int \frac {e^{-3 x}}{-1+x} \, dx,x,\log (x)\right )+64 \int \frac {1}{x^5 (-1+\log (x))} \, dx-64 \operatorname {Subst}\left (\int \frac {e^{-4 x}}{-1+x} \, dx,x,\log (x)\right )\\ &=-8 x+\frac {24 \text {Ei}(3 (1-\log (x)))}{e^3}-\frac {64 \text {Ei}(4 (1-\log (x)))}{e^4}-\frac {16}{x^4 (1-\log (x))}+\frac {8}{x^3 (1-\log (x))}-24 \operatorname {Subst}\left (\int \frac {e^{-3 x}}{-1+x} \, dx,x,\log (x)\right )+64 \operatorname {Subst}\left (\int \frac {e^{-4 x}}{-1+x} \, dx,x,\log (x)\right )\\ &=-8 x-\frac {16}{x^4 (1-\log (x))}+\frac {8}{x^3 (1-\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 17, normalized size = 0.71 \begin {gather*} -8 \left (x+\frac {-2+x}{x^4 (-1+\log (x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 30, normalized size = 1.25 \begin {gather*} -\frac {8 \, {\left (x^{5} \log \relax (x) - x^{5} + x - 2\right )}}{x^{4} \log \relax (x) - x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 23, normalized size = 0.96 \begin {gather*} -8 \, x - \frac {8 \, {\left (x - 2\right )}}{x^{4} \log \relax (x) - x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.79
method | result | size |
risch | \(-8 x -\frac {8 \left (x -2\right )}{x^{4} \left (\ln \relax (x )-1\right )}\) | \(19\) |
norman | \(\frac {16-8 x +8 x^{5}-8 x^{5} \ln \relax (x )}{x^{4} \left (\ln \relax (x )-1\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 30, normalized size = 1.25 \begin {gather*} -\frac {8 \, {\left (x^{5} \log \relax (x) - x^{5} + x - 2\right )}}{x^{4} \log \relax (x) - x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.26, size = 20, normalized size = 0.83 \begin {gather*} -8\,x-\frac {8\,x-16}{x^4\,\left (\ln \relax (x)-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.71 \begin {gather*} - 8 x + \frac {16 - 8 x}{x^{4} \log {\relax (x )} - x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________