Optimal. Leaf size=19 \[ e^{\frac {e-\log (3)}{20+x-x \log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 2.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-e+\log (3)}{-20-x+x \log (x)}} (e-\log (3)) \log (x)}{400+40 x+x^2+\left (-40 x-2 x^2\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(e-\log (3)) \int \frac {e^{\frac {-e+\log (3)}{-20-x+x \log (x)}} \log (x)}{400+40 x+x^2+\left (-40 x-2 x^2\right ) \log (x)+x^2 \log ^2(x)} \, dx\\ &=(e-\log (3)) \int \frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}} \log (x)}{(20+x-x \log (x))^2} \, dx\\ &=(e-\log (3)) \int \left (\frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}} (20+x)}{x (-20-x+x \log (x))^2}+\frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}}}{x (-20-x+x \log (x))}\right ) \, dx\\ &=(e-\log (3)) \int \frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}} (20+x)}{x (-20-x+x \log (x))^2} \, dx+(e-\log (3)) \int \frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}}}{x (-20-x+x \log (x))} \, dx\\ &=(e-\log (3)) \int \frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}}}{x (-20-x+x \log (x))} \, dx+(e-\log (3)) \int \left (\frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}}}{(-20-x+x \log (x))^2}+\frac {20\ 3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}}}{x (-20-x+x \log (x))^2}\right ) \, dx\\ &=(e-\log (3)) \int \frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}}}{(-20-x+x \log (x))^2} \, dx+(e-\log (3)) \int \frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}}}{x (-20-x+x \log (x))} \, dx+(20 (e-\log (3))) \int \frac {3^{\frac {1}{-20-x+x \log (x)}} e^{\frac {e}{20+x-x \log (x)}}}{x (-20-x+x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 19, normalized size = 1.00 \begin {gather*} e^{\frac {e-\log (3)}{20+x-x \log (x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 21, normalized size = 1.11 \begin {gather*} e^{\left (-\frac {e - \log \relax (3)}{x \log \relax (x) - x - 20}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 31, normalized size = 1.63 \begin {gather*} e^{\left (-\frac {e}{x \log \relax (x) - x - 20} + \frac {\log \relax (3)}{x \log \relax (x) - x - 20}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 22, normalized size = 1.16
method | result | size |
risch | \({\mathrm e}^{-\frac {-\ln \relax (3)+{\mathrm e}}{x \ln \relax (x )-x -20}}\) | \(22\) |
norman | \(\frac {x \ln \relax (x ) {\mathrm e}^{\frac {\ln \relax (3)-{\mathrm e}}{x \ln \relax (x )-x -20}}-x \,{\mathrm e}^{\frac {\ln \relax (3)-{\mathrm e}}{x \ln \relax (x )-x -20}}-20 \,{\mathrm e}^{\frac {\ln \relax (3)-{\mathrm e}}{x \ln \relax (x )-x -20}}}{x \ln \relax (x )-x -20}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.97, size = 29, normalized size = 1.53 \begin {gather*} \frac {{\mathrm {e}}^{\frac {\mathrm {e}}{x-x\,\ln \relax (x)+20}}}{3^{\frac {1}{x-x\,\ln \relax (x)+20}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.97, size = 15, normalized size = 0.79 \begin {gather*} e^{\frac {- e + \log {\relax (3 )}}{x \log {\relax (x )} - x - 20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________