3.85.3 8ex+eex2x8(8ex+ex2(12x2))8+8eex2x8dx

Optimal. Leaf size=25 exlog(4+4eex2x8)

________________________________________________________________________________________

Rubi [A]  time = 0.61, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 57, number of rulesintegrand size = 0.088, Rules used = {6741, 12, 6742, 2194, 6684} log(1eex2x8)ex

Antiderivative was successfully verified.

[In]

Int[(8*E^x + E^((E^x^2*x)/8)*(-8*E^x + E^x^2*(-1 - 2*x^2)))/(-8 + 8*E^((E^x^2*x)/8)),x]

[Out]

-E^x - Log[1 - E^((E^x^2*x)/8)]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=8exeex2x8(8ex+ex2(12x2))8(1eex2x8)dx=188exeex2x8(8ex+ex2(12x2))1eex2x8dx=18(8ex+e18x(ex2+8x)(1+2x2)1eex2x8)dx=18e18x(ex2+8x)(1+2x2)1eex2x8dxexdx=exlog(1eex2x8)

________________________________________________________________________________________

Mathematica [A]  time = 0.36, size = 25, normalized size = 1.00 exlog(1eex2x8)

Antiderivative was successfully verified.

[In]

Integrate[(8*E^x + E^((E^x^2*x)/8)*(-8*E^x + E^x^2*(-1 - 2*x^2)))/(-8 + 8*E^((E^x^2*x)/8)),x]

[Out]

-E^x - Log[1 - E^((E^x^2*x)/8)]

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 18, normalized size = 0.72 exlog(e(18xe(x2))1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2-1)*exp(x^2)-8*exp(x))*exp(1/16*exp(x^2)*x)^2+8*exp(x))/(8*exp(1/16*exp(x^2)*x)^2-8),x, alg
orithm="fricas")

[Out]

-e^x - log(e^(1/8*x*e^(x^2)) - 1)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 30, normalized size = 1.20 x2exlog(e(x2+18xe(x2))e(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2-1)*exp(x^2)-8*exp(x))*exp(1/16*exp(x^2)*x)^2+8*exp(x))/(8*exp(1/16*exp(x^2)*x)^2-8),x, alg
orithm="giac")

[Out]

x^2 - e^x - log(e^(x^2 + 1/8*x*e^(x^2)) - e^(x^2))

________________________________________________________________________________________

maple [A]  time = 0.06, size = 19, normalized size = 0.76




method result size



risch exln(eex2x81) 19



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-2*x^2-1)*exp(x^2)-8*exp(x))*exp(1/16*exp(x^2)*x)^2+8*exp(x))/(8*exp(1/16*exp(x^2)*x)^2-8),x,method=_RE
TURNVERBOSE)

[Out]

-exp(x)-ln(exp(1/8*exp(x^2)*x)-1)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 18, normalized size = 0.72 exlog(e(18xe(x2))1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2-1)*exp(x^2)-8*exp(x))*exp(1/16*exp(x^2)*x)^2+8*exp(x))/(8*exp(1/16*exp(x^2)*x)^2-8),x, alg
orithm="maxima")

[Out]

-e^x - log(e^(1/8*x*e^(x^2)) - 1)

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 18, normalized size = 0.72 ln(exex281)ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*exp(x) - exp((x*exp(x^2))/8)*(8*exp(x) + exp(x^2)*(2*x^2 + 1)))/(8*exp((x*exp(x^2))/8) - 8),x)

[Out]

- log(exp((x*exp(x^2))/8) - 1) - exp(x)

________________________________________________________________________________________

sympy [A]  time = 0.28, size = 29, normalized size = 1.16 7xex264exlog(exex281)8

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x**2-1)*exp(x**2)-8*exp(x))*exp(1/16*exp(x**2)*x)**2+8*exp(x))/(8*exp(1/16*exp(x**2)*x)**2-8),
x)

[Out]

-7*x*exp(x**2)/64 - exp(x) - log(exp(x*exp(x**2)/8) - 1)/8

________________________________________________________________________________________