3.85.4 50x+25x2+(50x+25x2)log(x)+(90+60x+10x2+(3010x)log(3+x))log(1+log(x))+(10x+5x2+(10x+5x2)log(x))log2(1+log(x))6x+2x2+(6x+2x2)log(x)dx

Optimal. Leaf size=22 52(3+xlog(3+x))(5+log2(1+log(x)))

________________________________________________________________________________________

Rubi [F]  time = 0.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 50x+25x2+(50x+25x2)log(x)+(90+60x+10x2+(3010x)log(3+x))log(1+log(x))+(10x+5x2+(10x+5x2)log(x))log2(1+log(x))6x+2x2+(6x+2x2)log(x)dx

Verification is not applicable to the result.

[In]

Int[(50*x + 25*x^2 + (50*x + 25*x^2)*Log[x] + (90 + 60*x + 10*x^2 + (-30 - 10*x)*Log[3 + x])*Log[1 + Log[x]] +
 (10*x + 5*x^2 + (10*x + 5*x^2)*Log[x])*Log[1 + Log[x]]^2)/(6*x + 2*x^2 + (6*x + 2*x^2)*Log[x]),x]

[Out]

(25*x)/2 - (25*Log[3 + x])/2 + (15*Log[1 + Log[x]]^2)/2 + 5*Defer[Int][Log[1 + Log[x]]/(1 + Log[x]), x] - 5*De
fer[Int][(Log[3 + x]*Log[1 + Log[x]])/(x*(1 + Log[x])), x] + (5*Defer[Int][Log[1 + Log[x]]^2, x])/2 - (5*Defer
[Int][Log[1 + Log[x]]^2/(3 + x), x])/2

Rubi steps

integral=5(5x(2+x)+2(3+x)(3+xlog(3+x))log(1+log(x))+x(2+x)log2(1+log(x))+x(2+x)log(x)(5+log2(1+log(x))))2x(3+x)(1+log(x))dx=525x(2+x)+2(3+x)(3+xlog(3+x))log(1+log(x))+x(2+x)log2(1+log(x))+x(2+x)log(x)(5+log2(1+log(x)))x(3+x)(1+log(x))dx=52(5(2+x)3+x+2(3+xlog(3+x))log(1+log(x))x(1+log(x))+(2+x)log2(1+log(x))3+x)dx=52(2+x)log2(1+log(x))3+xdx+5(3+xlog(3+x))log(1+log(x))x(1+log(x))dx+2522+x3+xdx=52(log2(1+log(x))log2(1+log(x))3+x)dx+5(log(1+log(x))1+log(x)+3log(1+log(x))x(1+log(x))log(3+x)log(1+log(x))x(1+log(x)))dx+252(1+13x)dx=25x2252log(3+x)+52log2(1+log(x))dx52log2(1+log(x))3+xdx+5log(1+log(x))1+log(x)dx5log(3+x)log(1+log(x))x(1+log(x))dx+15log(1+log(x))x(1+log(x))dx=25x2252log(3+x)+52log2(1+log(x))dx52log2(1+log(x))3+xdx+5log(1+log(x))1+log(x)dx5log(3+x)log(1+log(x))x(1+log(x))dx+15Subst(log(1+x)1+xdx,x,log(x))=25x2252log(3+x)+52log2(1+log(x))dx52log2(1+log(x))3+xdx+5log(1+log(x))1+log(x)dx5log(3+x)log(1+log(x))x(1+log(x))dx+15Subst(log(x)xdx,x,1+log(x))=25x2252log(3+x)+152log2(1+log(x))+52log2(1+log(x))dx52log2(1+log(x))3+xdx+5log(1+log(x))1+log(x)dx5log(3+x)log(1+log(x))x(1+log(x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 31, normalized size = 1.41 52(5x5log(3+x)+(3+xlog(3+x))log2(1+log(x)))

Antiderivative was successfully verified.

[In]

Integrate[(50*x + 25*x^2 + (50*x + 25*x^2)*Log[x] + (90 + 60*x + 10*x^2 + (-30 - 10*x)*Log[3 + x])*Log[1 + Log
[x]] + (10*x + 5*x^2 + (10*x + 5*x^2)*Log[x])*Log[1 + Log[x]]^2)/(6*x + 2*x^2 + (6*x + 2*x^2)*Log[x]),x]

[Out]

(5*(5*x - 5*Log[3 + x] + (3 + x - Log[3 + x])*Log[1 + Log[x]]^2))/2

________________________________________________________________________________________

fricas [A]  time = 0.95, size = 28, normalized size = 1.27 52(xlog(x+3)+3)log(log(x)+1)2+252x252log(x+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((5*x^2+10*x)*log(x)+5*x^2+10*x)*log(log(x)+1)^2+((-10*x-30)*log(3+x)+10*x^2+60*x+90)*log(log(x)+1)
+(25*x^2+50*x)*log(x)+25*x^2+50*x)/((2*x^2+6*x)*log(x)+2*x^2+6*x),x, algorithm="fricas")

[Out]

5/2*(x - log(x + 3) + 3)*log(log(x) + 1)^2 + 25/2*x - 25/2*log(x + 3)

________________________________________________________________________________________

giac [A]  time = 0.26, size = 36, normalized size = 1.64 52(xlog(x+3))log(log(x)+1)2+152log(log(x)+1)2+252x252log(x+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((5*x^2+10*x)*log(x)+5*x^2+10*x)*log(log(x)+1)^2+((-10*x-30)*log(3+x)+10*x^2+60*x+90)*log(log(x)+1)
+(25*x^2+50*x)*log(x)+25*x^2+50*x)/((2*x^2+6*x)*log(x)+2*x^2+6*x),x, algorithm="giac")

[Out]

5/2*(x - log(x + 3))*log(log(x) + 1)^2 + 15/2*log(log(x) + 1)^2 + 25/2*x - 25/2*log(x + 3)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 30, normalized size = 1.36




method result size



risch (5x25ln(3+x)2+152)ln(ln(x)+1)2+25x225ln(3+x)2 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((5*x^2+10*x)*ln(x)+5*x^2+10*x)*ln(ln(x)+1)^2+((-10*x-30)*ln(3+x)+10*x^2+60*x+90)*ln(ln(x)+1)+(25*x^2+50*
x)*ln(x)+25*x^2+50*x)/((2*x^2+6*x)*ln(x)+2*x^2+6*x),x,method=_RETURNVERBOSE)

[Out]

(5/2*x-5/2*ln(3+x)+15/2)*ln(ln(x)+1)^2+25/2*x-25/2*ln(3+x)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 28, normalized size = 1.27 52(xlog(x+3)+3)log(log(x)+1)2+252x252log(x+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((5*x^2+10*x)*log(x)+5*x^2+10*x)*log(log(x)+1)^2+((-10*x-30)*log(3+x)+10*x^2+60*x+90)*log(log(x)+1)
+(25*x^2+50*x)*log(x)+25*x^2+50*x)/((2*x^2+6*x)*log(x)+2*x^2+6*x),x, algorithm="maxima")

[Out]

5/2*(x - log(x + 3) + 3)*log(log(x) + 1)^2 + 25/2*x - 25/2*log(x + 3)

________________________________________________________________________________________

mupad [B]  time = 5.47, size = 47, normalized size = 2.14 (5x3+15x22x(x+3)5ln(x+3)2+152)ln(ln(x)+1)2+25x225ln(x+3)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((50*x + log(log(x) + 1)*(60*x + 10*x^2 - log(x + 3)*(10*x + 30) + 90) + log(log(x) + 1)^2*(10*x + log(x)*(
10*x + 5*x^2) + 5*x^2) + log(x)*(50*x + 25*x^2) + 25*x^2)/(6*x + log(x)*(6*x + 2*x^2) + 2*x^2),x)

[Out]

(25*x)/2 - (25*log(x + 3))/2 + log(log(x) + 1)^2*((15*x^2 + 5*x^3)/(2*x*(x + 3)) - (5*log(x + 3))/2 + 15/2)

________________________________________________________________________________________

sympy [A]  time = 0.81, size = 37, normalized size = 1.68 25x2+(5x25log(x+3)2+152)log(log(x)+1)225log(x+3)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((5*x**2+10*x)*ln(x)+5*x**2+10*x)*ln(ln(x)+1)**2+((-10*x-30)*ln(3+x)+10*x**2+60*x+90)*ln(ln(x)+1)+(
25*x**2+50*x)*ln(x)+25*x**2+50*x)/((2*x**2+6*x)*ln(x)+2*x**2+6*x),x)

[Out]

25*x/2 + (5*x/2 - 5*log(x + 3)/2 + 15/2)*log(log(x) + 1)**2 - 25*log(x + 3)/2

________________________________________________________________________________________