3.85.4
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [F] time = 0.91, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(50*x + 25*x^2 + (50*x + 25*x^2)*Log[x] + (90 + 60*x + 10*x^2 + (-30 - 10*x)*Log[3 + x])*Log[1 + Log[x]] +
(10*x + 5*x^2 + (10*x + 5*x^2)*Log[x])*Log[1 + Log[x]]^2)/(6*x + 2*x^2 + (6*x + 2*x^2)*Log[x]),x]
[Out]
(25*x)/2 - (25*Log[3 + x])/2 + (15*Log[1 + Log[x]]^2)/2 + 5*Defer[Int][Log[1 + Log[x]]/(1 + Log[x]), x] - 5*De
fer[Int][(Log[3 + x]*Log[1 + Log[x]])/(x*(1 + Log[x])), x] + (5*Defer[Int][Log[1 + Log[x]]^2, x])/2 - (5*Defer
[Int][Log[1 + Log[x]]^2/(3 + x), x])/2
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 31, normalized size = 1.41
Antiderivative was successfully verified.
[In]
Integrate[(50*x + 25*x^2 + (50*x + 25*x^2)*Log[x] + (90 + 60*x + 10*x^2 + (-30 - 10*x)*Log[3 + x])*Log[1 + Log
[x]] + (10*x + 5*x^2 + (10*x + 5*x^2)*Log[x])*Log[1 + Log[x]]^2)/(6*x + 2*x^2 + (6*x + 2*x^2)*Log[x]),x]
[Out]
(5*(5*x - 5*Log[3 + x] + (3 + x - Log[3 + x])*Log[1 + Log[x]]^2))/2
________________________________________________________________________________________
fricas [A] time = 0.95, size = 28, normalized size = 1.27
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((5*x^2+10*x)*log(x)+5*x^2+10*x)*log(log(x)+1)^2+((-10*x-30)*log(3+x)+10*x^2+60*x+90)*log(log(x)+1)
+(25*x^2+50*x)*log(x)+25*x^2+50*x)/((2*x^2+6*x)*log(x)+2*x^2+6*x),x, algorithm="fricas")
[Out]
5/2*(x - log(x + 3) + 3)*log(log(x) + 1)^2 + 25/2*x - 25/2*log(x + 3)
________________________________________________________________________________________
giac [A] time = 0.26, size = 36, normalized size = 1.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((5*x^2+10*x)*log(x)+5*x^2+10*x)*log(log(x)+1)^2+((-10*x-30)*log(3+x)+10*x^2+60*x+90)*log(log(x)+1)
+(25*x^2+50*x)*log(x)+25*x^2+50*x)/((2*x^2+6*x)*log(x)+2*x^2+6*x),x, algorithm="giac")
[Out]
5/2*(x - log(x + 3))*log(log(x) + 1)^2 + 15/2*log(log(x) + 1)^2 + 25/2*x - 25/2*log(x + 3)
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((5*x^2+10*x)*ln(x)+5*x^2+10*x)*ln(ln(x)+1)^2+((-10*x-30)*ln(3+x)+10*x^2+60*x+90)*ln(ln(x)+1)+(25*x^2+50*
x)*ln(x)+25*x^2+50*x)/((2*x^2+6*x)*ln(x)+2*x^2+6*x),x,method=_RETURNVERBOSE)
[Out]
(5/2*x-5/2*ln(3+x)+15/2)*ln(ln(x)+1)^2+25/2*x-25/2*ln(3+x)
________________________________________________________________________________________
maxima [A] time = 0.40, size = 28, normalized size = 1.27
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((5*x^2+10*x)*log(x)+5*x^2+10*x)*log(log(x)+1)^2+((-10*x-30)*log(3+x)+10*x^2+60*x+90)*log(log(x)+1)
+(25*x^2+50*x)*log(x)+25*x^2+50*x)/((2*x^2+6*x)*log(x)+2*x^2+6*x),x, algorithm="maxima")
[Out]
5/2*(x - log(x + 3) + 3)*log(log(x) + 1)^2 + 25/2*x - 25/2*log(x + 3)
________________________________________________________________________________________
mupad [B] time = 5.47, size = 47, normalized size = 2.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((50*x + log(log(x) + 1)*(60*x + 10*x^2 - log(x + 3)*(10*x + 30) + 90) + log(log(x) + 1)^2*(10*x + log(x)*(
10*x + 5*x^2) + 5*x^2) + log(x)*(50*x + 25*x^2) + 25*x^2)/(6*x + log(x)*(6*x + 2*x^2) + 2*x^2),x)
[Out]
(25*x)/2 - (25*log(x + 3))/2 + log(log(x) + 1)^2*((15*x^2 + 5*x^3)/(2*x*(x + 3)) - (5*log(x + 3))/2 + 15/2)
________________________________________________________________________________________
sympy [A] time = 0.81, size = 37, normalized size = 1.68
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((5*x**2+10*x)*ln(x)+5*x**2+10*x)*ln(ln(x)+1)**2+((-10*x-30)*ln(3+x)+10*x**2+60*x+90)*ln(ln(x)+1)+(
25*x**2+50*x)*ln(x)+25*x**2+50*x)/((2*x**2+6*x)*ln(x)+2*x**2+6*x),x)
[Out]
25*x/2 + (5*x/2 - 5*log(x + 3)/2 + 15/2)*log(log(x) + 1)**2 - 25*log(x + 3)/2
________________________________________________________________________________________