Optimal. Leaf size=22 \[ \log \left (-1-x+2 x^3-\frac {5}{\log (2)}-x \log (3)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 1, number of rules used = 1, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {1587} \begin {gather*} \log \left (\left (-2 x^3+x+1\right ) \log (2)+x \log (2) \log (3)+5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (5+\left (1+x-2 x^3\right ) \log (2)+x \log (2) \log (3)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.09, size = 80, normalized size = 3.64 \begin {gather*} \log (2) \text {RootSum}\left [5+\log (2)+\log (2) \text {$\#$1}+\log (2) \log (3) \text {$\#$1}-\log (4) \text {$\#$1}^3\&,\frac {\log (x-\text {$\#$1})+\log (3) \log (x-\text {$\#$1})-6 \log (x-\text {$\#$1}) \text {$\#$1}^2}{\log (2)+\log (2) \log (3)-3 \log (4) \text {$\#$1}^2}\&\right ] \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 23, normalized size = 1.05 \begin {gather*} \log \left (-x \log \relax (3) \log \relax (2) + {\left (2 \, x^{3} - x - 1\right )} \log \relax (2) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 25, normalized size = 1.14 \begin {gather*} \log \left ({\left | x \log \relax (3) \log \relax (2) - {\left (2 \, x^{3} - x\right )} \log \relax (2) + \log \relax (2) + 5 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.95
method | result | size |
derivativedivides | \(\ln \left (x \ln \relax (2) \ln \relax (3)+\left (-2 x^{3}+x +1\right ) \ln \relax (2)+5\right )\) | \(21\) |
default | \(\ln \left (-2 x^{3} \ln \relax (2)+x \ln \relax (2) \ln \relax (3)+x \ln \relax (2)+\ln \relax (2)+5\right )\) | \(23\) |
norman | \(\ln \left (-2 x^{3} \ln \relax (2)+x \ln \relax (2) \ln \relax (3)+x \ln \relax (2)+\ln \relax (2)+5\right )\) | \(23\) |
risch | \(\ln \left (-2 x^{3} \ln \relax (2)+\left (\ln \relax (2) \ln \relax (3)+\ln \relax (2)\right ) x +\ln \relax (2)+5\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 23, normalized size = 1.05 \begin {gather*} \log \left (x \log \relax (3) \log \relax (2) - {\left (2 \, x^{3} - x - 1\right )} \log \relax (2) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.31, size = 23, normalized size = 1.05 \begin {gather*} \ln \left (2\,\ln \relax (2)\,x^3-\ln \relax (2)\,\left (\ln \relax (3)+1\right )\,x-\ln \relax (2)-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 27, normalized size = 1.23 \begin {gather*} \log {\left (2 x^{3} \log {\relax (2 )} + x \left (- \log {\relax (2 )} \log {\relax (3 )} - \log {\relax (2 )}\right ) - 5 - \log {\relax (2 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________