3.85.18 e36002280x+361x2400log2(x)(36002280x+361x2+(1140x361x2)log(x)+200log2(x)+200log3(x))100log2(x)dx

Optimal. Leaf size=24 5+2e(319x20)2log2(x)xlog(x)

________________________________________________________________________________________

Rubi [B]  time = 0.22, antiderivative size = 81, normalized size of antiderivative = 3.38, number of steps used = 2, number of rules used = 2, integrand size = 62, number of rulesintegrand size = 0.032, Rules used = {12, 2288} 2e361x22280x+3600400log2(x)(361x2+19(60x19x2)log(x)2280x+3600)(361x22280x+3600xlog3(x)+19(6019x)log2(x))log2(x)

Antiderivative was successfully verified.

[In]

Int[(3600 - 2280*x + 361*x^2 + (1140*x - 361*x^2)*Log[x] + 200*Log[x]^2 + 200*Log[x]^3)/(100*E^((3600 - 2280*x
 + 361*x^2)/(400*Log[x]^2))*Log[x]^2),x]

[Out]

(2*(3600 - 2280*x + 361*x^2 + 19*(60*x - 19*x^2)*Log[x]))/(E^((3600 - 2280*x + 361*x^2)/(400*Log[x]^2))*((3600
 - 2280*x + 361*x^2)/(x*Log[x]^3) + (19*(60 - 19*x))/Log[x]^2)*Log[x]^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=1100e36002280x+361x2400log2(x)(36002280x+361x2+(1140x361x2)log(x)+200log2(x)+200log3(x))log2(x)dx=2e36002280x+361x2400log2(x)(36002280x+361x2+19(60x19x2)log(x))(36002280x+361x2xlog3(x)+19(6019x)log2(x))log2(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 22, normalized size = 0.92 2e(6019x)2400log2(x)xlog(x)

Antiderivative was successfully verified.

[In]

Integrate[(3600 - 2280*x + 361*x^2 + (1140*x - 361*x^2)*Log[x] + 200*Log[x]^2 + 200*Log[x]^3)/(100*E^((3600 -
2280*x + 361*x^2)/(400*Log[x]^2))*Log[x]^2),x]

[Out]

(2*x*Log[x])/E^((60 - 19*x)^2/(400*Log[x]^2))

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 22, normalized size = 0.92 2xe(361x22280x+3600400log(x)2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/100*(200*log(x)^3+200*log(x)^2+(-361*x^2+1140*x)*log(x)+361*x^2-2280*x+3600)/log(x)^2/exp(1/400*(3
61*x^2-2280*x+3600)/log(x)^2),x, algorithm="fricas")

[Out]

2*x*e^(-1/400*(361*x^2 - 2280*x + 3600)/log(x)^2)*log(x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 undef

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/100*(200*log(x)^3+200*log(x)^2+(-361*x^2+1140*x)*log(x)+361*x^2-2280*x+3600)/log(x)^2/exp(1/400*(3
61*x^2-2280*x+3600)/log(x)^2),x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

maple [A]  time = 0.03, size = 20, normalized size = 0.83




method result size



risch 2ln(x)xe(19x60)2400ln(x)2 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/100*(200*ln(x)^3+200*ln(x)^2+(-361*x^2+1140*x)*ln(x)+361*x^2-2280*x+3600)/ln(x)^2/exp(1/400*(361*x^2-228
0*x+3600)/ln(x)^2),x,method=_RETURNVERBOSE)

[Out]

2*ln(x)*x*exp(-1/400*(19*x-60)^2/ln(x)^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 1100(200log(x)3+361x219(19x260x)log(x)+200log(x)22280x+3600)e(361x22280x+3600400log(x)2)log(x)2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/100*(200*log(x)^3+200*log(x)^2+(-361*x^2+1140*x)*log(x)+361*x^2-2280*x+3600)/log(x)^2/exp(1/400*(3
61*x^2-2280*x+3600)/log(x)^2),x, algorithm="maxima")

[Out]

1/100*integrate((200*log(x)^3 + 361*x^2 - 19*(19*x^2 - 60*x)*log(x) + 200*log(x)^2 - 2280*x + 3600)*e^(-1/400*
(361*x^2 - 2280*x + 3600)/log(x)^2)/log(x)^2, x)

________________________________________________________________________________________

mupad [B]  time = 5.51, size = 22, normalized size = 0.92 2xe361x22280x+3600400ln(x)2ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-((361*x^2)/400 - (57*x)/10 + 9)/log(x)^2)*(2*log(x)^2 - (114*x)/5 + 2*log(x)^3 + (log(x)*(1140*x - 3
61*x^2))/100 + (361*x^2)/100 + 36))/log(x)^2,x)

[Out]

2*x*exp(-(361*x^2 - 2280*x + 3600)/(400*log(x)^2))*log(x)

________________________________________________________________________________________

sympy [A]  time = 4.01, size = 26, normalized size = 1.08 2xe361x240057x10+9log(x)2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/100*(200*ln(x)**3+200*ln(x)**2+(-361*x**2+1140*x)*ln(x)+361*x**2-2280*x+3600)/ln(x)**2/exp(1/400*(
361*x**2-2280*x+3600)/ln(x)**2),x)

[Out]

2*x*exp(-(361*x**2/400 - 57*x/10 + 9)/log(x)**2)*log(x)

________________________________________________________________________________________