3.85.32 6+32x2+(3+581x+194x2+3072x3+1024x4)log(3+x)+(2+(192x+64x2)log(3+x))log(log(3+x))(3+x)log(3+x)dx

Optimal. Leaf size=23 x+x2+(316x2log(log(3+x)))2

________________________________________________________________________________________

Rubi [F]  time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 6+32x2+(3+581x+194x2+3072x3+1024x4)log(3+x)+(2+(192x+64x2)log(3+x))log(log(3+x))(3+x)log(3+x)dx

Verification is not applicable to the result.

[In]

Int[(6 + 32*x^2 + (-3 + 581*x + 194*x^2 + 3072*x^3 + 1024*x^4)*Log[3 + x] + (2 + (192*x + 64*x^2)*Log[3 + x])*
Log[Log[3 + x]])/((3 + x)*Log[3 + x]),x]

[Out]

-x + 97*x^2 + 256*x^4 + 32*ExpIntegralEi[2*Log[3 + x]] + 294*Log[Log[3 + x]] + Log[Log[3 + x]]^2 - 192*LogInte
gral[3 + x] + 64*Defer[Int][x*Log[Log[3 + x]], x]

Rubi steps

integral=(1+194x+1024x3+64xlog(log(3+x))+2(3+16x2+log(log(3+x)))(3+x)log(3+x))dx=x+97x2+256x4+23+16x2+log(log(3+x))(3+x)log(3+x)dx+64xlog(log(3+x))dx=x+97x2+256x4+2(3+16x2(3+x)log(3+x)+log(log(3+x))(3+x)log(3+x))dx+64xlog(log(3+x))dx=x+97x2+256x4+23+16x2(3+x)log(3+x)dx+2log(log(3+x))(3+x)log(3+x)dx+64xlog(log(3+x))dx=x+97x2+256x4+log2(log(3+x))+2(48log(3+x)+16xlog(3+x)+147(3+x)log(3+x))dx+64xlog(log(3+x))dx=x+97x2+256x4+log2(log(3+x))+32xlog(3+x)dx+64xlog(log(3+x))dx961log(3+x)dx+2941(3+x)log(3+x)dx=x+97x2+256x4+log2(log(3+x))+32(3log(3+x)+3+xlog(3+x))dx+64xlog(log(3+x))dx96Subst(1log(x)dx,x,3+x)+294Subst(1xlog(x)dx,x,3+x)=x+97x2+256x4+log2(log(3+x))96li(3+x)+323+xlog(3+x)dx+64xlog(log(3+x))dx961log(3+x)dx+294Subst(1xdx,x,log(3+x))=x+97x2+256x4+294log(log(3+x))+log2(log(3+x))96li(3+x)+32Subst(xlog(x)dx,x,3+x)+64xlog(log(3+x))dx96Subst(1log(x)dx,x,3+x)=x+97x2+256x4+294log(log(3+x))+log2(log(3+x))192li(3+x)+32Subst(e2xxdx,x,log(3+x))+64xlog(log(3+x))dx=x+97x2+256x4+32Ei(2log(3+x))+294log(log(3+x))+log2(log(3+x))192li(3+x)+64xlog(log(3+x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 41, normalized size = 1.78 x+97x2+256x4+294log(log(3+x))+32(3+x)(3+x)log(log(3+x))+log2(log(3+x))

Antiderivative was successfully verified.

[In]

Integrate[(6 + 32*x^2 + (-3 + 581*x + 194*x^2 + 3072*x^3 + 1024*x^4)*Log[3 + x] + (2 + (192*x + 64*x^2)*Log[3
+ x])*Log[Log[3 + x]])/((3 + x)*Log[3 + x]),x]

[Out]

-x + 97*x^2 + 256*x^4 + 294*Log[Log[3 + x]] + 32*(-3 + x)*(3 + x)*Log[Log[3 + x]] + Log[Log[3 + x]]^2

________________________________________________________________________________________

fricas [A]  time = 1.12, size = 35, normalized size = 1.52 256x4+97x2+2(16x2+3)log(log(x+3))+log(log(x+3))2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((64*x^2+192*x)*log(3+x)+2)*log(log(3+x))+(1024*x^4+3072*x^3+194*x^2+581*x-3)*log(3+x)+32*x^2+6)/(3
+x)/log(3+x),x, algorithm="fricas")

[Out]

256*x^4 + 97*x^2 + 2*(16*x^2 + 3)*log(log(x + 3)) + log(log(x + 3))^2 - x

________________________________________________________________________________________

giac [A]  time = 0.23, size = 38, normalized size = 1.65 256x4+32x2log(log(x+3))+97x2+log(log(x+3))2x+6log(log(x+3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((64*x^2+192*x)*log(3+x)+2)*log(log(3+x))+(1024*x^4+3072*x^3+194*x^2+581*x-3)*log(3+x)+32*x^2+6)/(3
+x)/log(3+x),x, algorithm="giac")

[Out]

256*x^4 + 32*x^2*log(log(x + 3)) + 97*x^2 + log(log(x + 3))^2 - x + 6*log(log(x + 3))

________________________________________________________________________________________

maple [A]  time = 0.37, size = 39, normalized size = 1.70




method result size



risch ln(ln(3+x))2+32x2ln(ln(3+x))+256x4+97x2x+6ln(ln(3+x)) 39



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((64*x^2+192*x)*ln(3+x)+2)*ln(ln(3+x))+(1024*x^4+3072*x^3+194*x^2+581*x-3)*ln(3+x)+32*x^2+6)/(3+x)/ln(3+x
),x,method=_RETURNVERBOSE)

[Out]

ln(ln(3+x))^2+32*x^2*ln(ln(3+x))+256*x^4+97*x^2-x+6*ln(ln(3+x))

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 38, normalized size = 1.65 256x4+32x2log(log(x+3))+97x2+log(log(x+3))2x+6log(log(x+3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((64*x^2+192*x)*log(3+x)+2)*log(log(3+x))+(1024*x^4+3072*x^3+194*x^2+581*x-3)*log(3+x)+32*x^2+6)/(3
+x)/log(3+x),x, algorithm="maxima")

[Out]

256*x^4 + 32*x^2*log(log(x + 3)) + 97*x^2 + log(log(x + 3))^2 - x + 6*log(log(x + 3))

________________________________________________________________________________________

mupad [B]  time = 5.30, size = 38, normalized size = 1.65 256x4+32x2ln(ln(x+3))+97x2x+ln(ln(x+3))2+6ln(ln(x+3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x + 3)*(581*x + 194*x^2 + 3072*x^3 + 1024*x^4 - 3) + log(log(x + 3))*(log(x + 3)*(192*x + 64*x^2) + 2
) + 32*x^2 + 6)/(log(x + 3)*(x + 3)),x)

[Out]

6*log(log(x + 3)) - x + log(log(x + 3))^2 + 97*x^2 + 256*x^4 + 32*x^2*log(log(x + 3))

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 39, normalized size = 1.70 256x4+32x2log(log(x+3))+97x2x+log(log(x+3))2+6log(log(x+3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((64*x**2+192*x)*ln(3+x)+2)*ln(ln(3+x))+(1024*x**4+3072*x**3+194*x**2+581*x-3)*ln(3+x)+32*x**2+6)/(
3+x)/ln(3+x),x)

[Out]

256*x**4 + 32*x**2*log(log(x + 3)) + 97*x**2 - x + log(log(x + 3))**2 + 6*log(log(x + 3))

________________________________________________________________________________________