3.85.78 4+3x+eex+xx3x+eexx+3x2xlog(x4)dx

Optimal. Leaf size=17 log(3eex3x+log(x4))

________________________________________________________________________________________

Rubi [F]  time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 4+3x+eex+xx3x+eexx+3x2xlog(x4)dx

Verification is not applicable to the result.

[In]

Int[(-4 + 3*x + E^(E^x + x)*x)/(-3*x + E^E^x*x + 3*x^2 - x*Log[x^4]),x]

[Out]

3*Defer[Int][(-3 + E^E^x + 3*x - Log[x^4])^(-1), x] + Defer[Int][E^(E^x + x)/(-3 + E^E^x + 3*x - Log[x^4]), x]
 - 4*Defer[Int][1/(x*(-3 + E^E^x + 3*x - Log[x^4])), x]

Rubi steps

integral=(eex+x3+eex+3xlog(x4)+4+3xx(3+eex+3xlog(x4)))dx=eex+x3+eex+3xlog(x4)dx+4+3xx(3+eex+3xlog(x4))dx=(33+eex+3xlog(x4)4x(3+eex+3xlog(x4)))dx+eex+x3+eex+3xlog(x4)dx=313+eex+3xlog(x4)dx41x(3+eex+3xlog(x4))dx+eex+x3+eex+3xlog(x4)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.33, size = 17, normalized size = 1.00 log(3eex3x+log(x4))

Antiderivative was successfully verified.

[In]

Integrate[(-4 + 3*x + E^(E^x + x)*x)/(-3*x + E^E^x*x + 3*x^2 - x*Log[x^4]),x]

[Out]

Log[3 - E^E^x - 3*x + Log[x^4]]

________________________________________________________________________________________

fricas [A]  time = 1.15, size = 26, normalized size = 1.53 x+log(3(x1)exexlog(x4)+e(x+ex))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x*exp(x)*exp(exp(x))+3*x-4)/(x*exp(exp(x))-x*log(x^4)+3*x^2-3*x),x, algorithm="fricas")

[Out]

-x + log(3*(x - 1)*e^x - e^x*log(x^4) + e^(x + e^x))

________________________________________________________________________________________

giac [A]  time = 0.16, size = 28, normalized size = 1.65 x+log(3xexexlog(x4)+e(x+ex)3ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x*exp(x)*exp(exp(x))+3*x-4)/(x*exp(exp(x))-x*log(x^4)+3*x^2-3*x),x, algorithm="giac")

[Out]

-x + log(3*x*e^x - e^x*log(x^4) + e^(x + e^x) - 3*e^x)

________________________________________________________________________________________

maple [C]  time = 0.15, size = 201, normalized size = 11.82




method result size



risch ln(eex+i(πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2+πcsgn(ix)csgn(ix2)csgn(ix3)πcsgn(ix)csgn(ix3)2+πcsgn(ix)csgn(ix3)csgn(ix4)πcsgn(ix)csgn(ix4)2+πcsgn(ix2)3πcsgn(ix2)csgn(ix3)2+πcsgn(ix3)3πcsgn(ix3)csgn(ix4)2+πcsgn(ix4)36ix+8iln(x)+6i)2) 201



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*exp(x)*exp(exp(x))+3*x-4)/(x*exp(exp(x))-x*ln(x^4)+3*x^2-3*x),x,method=_RETURNVERBOSE)

[Out]

ln(exp(exp(x))+1/2*I*(Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2+Pi*csgn(I*x)*csgn(I*x^2)*csgn(I*
x^3)-Pi*csgn(I*x)*csgn(I*x^3)^2+Pi*csgn(I*x)*csgn(I*x^3)*csgn(I*x^4)-Pi*csgn(I*x)*csgn(I*x^4)^2+Pi*csgn(I*x^2)
^3-Pi*csgn(I*x^2)*csgn(I*x^3)^2+Pi*csgn(I*x^3)^3-Pi*csgn(I*x^3)*csgn(I*x^4)^2+Pi*csgn(I*x^4)^3-6*I*x+8*I*ln(x)
+6*I))

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 13, normalized size = 0.76 log(3x+e(ex)4log(x)3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x*exp(x)*exp(exp(x))+3*x-4)/(x*exp(exp(x))-x*log(x^4)+3*x^2-3*x),x, algorithm="maxima")

[Out]

log(3*x + e^(e^x) - 4*log(x) - 3)

________________________________________________________________________________________

mupad [B]  time = 5.40, size = 15, normalized size = 0.88 ln(3x+eexln(x4)3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(3*x + x*exp(exp(x))*exp(x) - 4)/(3*x - x*exp(exp(x)) + x*log(x^4) - 3*x^2),x)

[Out]

log(3*x + exp(exp(x)) - log(x^4) - 3)

________________________________________________________________________________________

sympy [A]  time = 0.40, size = 15, normalized size = 0.88 log(3x+eexlog(x4)3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x*exp(x)*exp(exp(x))+3*x-4)/(x*exp(exp(x))-x*ln(x**4)+3*x**2-3*x),x)

[Out]

log(3*x + exp(exp(x)) - log(x**4) - 3)

________________________________________________________________________________________