3.85.79 9e4+e9x+9xdx

Optimal. Leaf size=11 2+e4+e9x

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 9, normalized size of antiderivative = 0.82, number of steps used = 3, number of rules used = 3, integrand size = 14, number of rulesintegrand size = 0.214, Rules used = {12, 2282, 2194} ee9x4

Antiderivative was successfully verified.

[In]

Int[9*E^(-4 + E^(9*x) + 9*x),x]

[Out]

E^(-4 + E^(9*x))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

integral=9e4+e9x+9xdx=Subst(e4+xdx,x,e9x)=e4+e9x

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 9, normalized size = 0.82 e4+e9x

Antiderivative was successfully verified.

[In]

Integrate[9*E^(-4 + E^(9*x) + 9*x),x]

[Out]

E^(-4 + E^(9*x))

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 7, normalized size = 0.64 e(e(9x)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(9*exp(9*x)*exp(exp(9*x)-4),x, algorithm="fricas")

[Out]

e^(e^(9*x) - 4)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 7, normalized size = 0.64 e(e(9x)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(9*exp(9*x)*exp(exp(9*x)-4),x, algorithm="giac")

[Out]

e^(e^(9*x) - 4)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 8, normalized size = 0.73




method result size



derivativedivides ee9x4 8
default ee9x4 8
norman ee9x4 8
risch ee9x4 8



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(9*exp(9*x)*exp(exp(9*x)-4),x,method=_RETURNVERBOSE)

[Out]

exp(exp(9*x)-4)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 7, normalized size = 0.64 e(e(9x)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(9*exp(9*x)*exp(exp(9*x)-4),x, algorithm="maxima")

[Out]

e^(e^(9*x) - 4)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 8, normalized size = 0.73 e4ee9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(9*exp(exp(9*x) - 4)*exp(9*x),x)

[Out]

exp(-4)*exp(exp(9*x))

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 7, normalized size = 0.64 ee9x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(9*exp(9*x)*exp(exp(9*x)-4),x)

[Out]

exp(exp(9*x) - 4)

________________________________________________________________________________________