3.85.80
Optimal. Leaf size=35
________________________________________________________________________________________
Rubi [F] time = 6.53, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(1 + 2*x)*(-225 - 425*x - 10*x^2 + 450*x^3 + 287*x^4 - 41*x^5 - 99*x^6 - 35*x^7 - 4*x^8) + E*(1500 - 27
00*x^2 - 900*x^3 + 1620*x^4 + 1080*x^5 - 144*x^6 - 324*x^7 - 108*x^8 - 12*x^9))/(-16000*x^4 + 28800*x^6 + 9600
*x^7 - 17280*x^8 - 11520*x^9 + 1536*x^10 + 3456*x^11 + 1152*x^12 + 128*x^13 + E^(6*x)*(54*x^4 + 54*x^5 + 18*x^
6 + 2*x^7) + E^(4*x)*(-1080*x^4 - 720*x^5 + 528*x^6 + 648*x^7 + 216*x^8 + 24*x^9) + E^(2*x)*(7200*x^4 + 2400*x
^5 - 8640*x^6 - 5760*x^7 + 1632*x^8 + 2592*x^9 + 864*x^10 + 96*x^11)),x]
[Out]
1320*E*Defer[Int][(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^(-3), x] - (3500*E*Defer[Int][1/(x^3*(-20 + 3
*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^3), x])/3 - (4900*E*Defer[Int][1/(x^2*(-20 + 3*E^(2*x) + E^(2*x)*x + 12
*x^2 + 4*x^3)^3), x])/9 + (48100*E*Defer[Int][1/(x*(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^3), x])/27 -
660*E*Defer[Int][x/(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^3, x] - 876*E*Defer[Int][x^2/(-20 + 3*E^(2*
x) + E^(2*x)*x + 12*x^2 + 4*x^3)^3, x] - 120*E*Defer[Int][x^3/(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^3
, x] + 144*E*Defer[Int][x^4/(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^3, x] + 64*E*Defer[Int][x^5/(-20 +
3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^3, x] + 8*E*Defer[Int][x^6/(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x
^3)^3, x] + (500*E*Defer[Int][1/((3 + x)*(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^3), x])/27 + (49*E*Def
er[Int][(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^(-2), x])/2 - (75*E*Defer[Int][1/(x^4*(-20 + 3*E^(2*x)
+ E^(2*x)*x + 12*x^2 + 4*x^3)^2), x])/2 - (175*E*Defer[Int][1/(x^3*(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x
^3)^2), x])/3 + (160*E*Defer[Int][1/(x^2*(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^2), x])/9 + (1865*E*De
fer[Int][1/(x*(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^2), x])/27 - 15*E*Defer[Int][x/(-20 + 3*E^(2*x) +
E^(2*x)*x + 12*x^2 + 4*x^3)^2, x] - (23*E*Defer[Int][x^2/(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^2, x]
)/2 - 2*E*Defer[Int][x^3/(-20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^2, x] + (25*E*Defer[Int][1/((3 + x)*(-
20 + 3*E^(2*x) + E^(2*x)*x + 12*x^2 + 4*x^3)^2), x])/27
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 44, normalized size = 1.26
Antiderivative was successfully verified.
[In]
Integrate[(E^(1 + 2*x)*(-225 - 425*x - 10*x^2 + 450*x^3 + 287*x^4 - 41*x^5 - 99*x^6 - 35*x^7 - 4*x^8) + E*(150
0 - 2700*x^2 - 900*x^3 + 1620*x^4 + 1080*x^5 - 144*x^6 - 324*x^7 - 108*x^8 - 12*x^9))/(-16000*x^4 + 28800*x^6
+ 9600*x^7 - 17280*x^8 - 11520*x^9 + 1536*x^10 + 3456*x^11 + 1152*x^12 + 128*x^13 + E^(6*x)*(54*x^4 + 54*x^5 +
18*x^6 + 2*x^7) + E^(4*x)*(-1080*x^4 - 720*x^5 + 528*x^6 + 648*x^7 + 216*x^8 + 24*x^9) + E^(2*x)*(7200*x^4 +
2400*x^5 - 8640*x^6 - 5760*x^7 + 1632*x^8 + 2592*x^9 + 864*x^10 + 96*x^11)),x]
[Out]
(E*(-5 + 3*x^2 + x^3)^2)/(2*x^3*(E^(2*x)*(3 + x) + 4*(-5 + 3*x^2 + x^3))^2)
________________________________________________________________________________________
fricas [B] time = 0.66, size = 118, normalized size = 3.37
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^8-35*x^7-99*x^6-41*x^5+287*x^4+450*x^3-10*x^2-425*x-225)*exp(1)*exp(x)^2+(-12*x^9-108*x^8-324
*x^7-144*x^6+1080*x^5+1620*x^4-900*x^3-2700*x^2+1500)*exp(1))/((2*x^7+18*x^6+54*x^5+54*x^4)*exp(x)^6+(24*x^9+2
16*x^8+648*x^7+528*x^6-720*x^5-1080*x^4)*exp(x)^4+(96*x^11+864*x^10+2592*x^9+1632*x^8-5760*x^7-8640*x^6+2400*x
^5+7200*x^4)*exp(x)^2+128*x^13+1152*x^12+3456*x^11+1536*x^10-11520*x^9-17280*x^8+9600*x^7+28800*x^6-16000*x^4)
,x, algorithm="fricas")
[Out]
1/2*(x^6 + 6*x^5 + 9*x^4 - 10*x^3 - 30*x^2 + 25)*e^3/(16*(x^9 + 6*x^8 + 9*x^7 - 10*x^6 - 30*x^5 + 25*x^3)*e^2
+ (x^5 + 6*x^4 + 9*x^3)*e^(4*x + 2) + 8*(x^7 + 6*x^6 + 9*x^5 - 5*x^4 - 15*x^3)*e^(2*x + 2))
________________________________________________________________________________________
giac [B] time = 0.22, size = 145, normalized size = 4.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^8-35*x^7-99*x^6-41*x^5+287*x^4+450*x^3-10*x^2-425*x-225)*exp(1)*exp(x)^2+(-12*x^9-108*x^8-324
*x^7-144*x^6+1080*x^5+1620*x^4-900*x^3-2700*x^2+1500)*exp(1))/((2*x^7+18*x^6+54*x^5+54*x^4)*exp(x)^6+(24*x^9+2
16*x^8+648*x^7+528*x^6-720*x^5-1080*x^4)*exp(x)^4+(96*x^11+864*x^10+2592*x^9+1632*x^8-5760*x^7-8640*x^6+2400*x
^5+7200*x^4)*exp(x)^2+128*x^13+1152*x^12+3456*x^11+1536*x^10-11520*x^9-17280*x^8+9600*x^7+28800*x^6-16000*x^4)
,x, algorithm="giac")
[Out]
1/2*(x^6*e + 6*x^5*e + 9*x^4*e - 10*x^3*e - 30*x^2*e + 25*e)/(16*x^9 + 96*x^8 + 8*x^7*e^(2*x) + 144*x^7 + 48*x
^6*e^(2*x) - 160*x^6 + x^5*e^(4*x) + 72*x^5*e^(2*x) - 480*x^5 + 6*x^4*e^(4*x) - 40*x^4*e^(2*x) + 9*x^3*e^(4*x)
- 120*x^3*e^(2*x) + 400*x^3)
________________________________________________________________________________________
maple [A] time = 0.08, size = 59, normalized size = 1.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-4*x^8-35*x^7-99*x^6-41*x^5+287*x^4+450*x^3-10*x^2-425*x-225)*exp(1)*exp(x)^2+(-12*x^9-108*x^8-324*x^7-1
44*x^6+1080*x^5+1620*x^4-900*x^3-2700*x^2+1500)*exp(1))/((2*x^7+18*x^6+54*x^5+54*x^4)*exp(x)^6+(24*x^9+216*x^8
+648*x^7+528*x^6-720*x^5-1080*x^4)*exp(x)^4+(96*x^11+864*x^10+2592*x^9+1632*x^8-5760*x^7-8640*x^6+2400*x^5+720
0*x^4)*exp(x)^2+128*x^13+1152*x^12+3456*x^11+1536*x^10-11520*x^9-17280*x^8+9600*x^7+28800*x^6-16000*x^4),x,met
hod=_RETURNVERBOSE)
[Out]
1/2*exp(1)*(x^6+6*x^5+9*x^4-10*x^3-30*x^2+25)/x^3/(x*exp(2*x)+4*x^3+3*exp(2*x)+12*x^2-20)^2
________________________________________________________________________________________
maxima [B] time = 0.71, size = 123, normalized size = 3.51
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^8-35*x^7-99*x^6-41*x^5+287*x^4+450*x^3-10*x^2-425*x-225)*exp(1)*exp(x)^2+(-12*x^9-108*x^8-324
*x^7-144*x^6+1080*x^5+1620*x^4-900*x^3-2700*x^2+1500)*exp(1))/((2*x^7+18*x^6+54*x^5+54*x^4)*exp(x)^6+(24*x^9+2
16*x^8+648*x^7+528*x^6-720*x^5-1080*x^4)*exp(x)^4+(96*x^11+864*x^10+2592*x^9+1632*x^8-5760*x^7-8640*x^6+2400*x
^5+7200*x^4)*exp(x)^2+128*x^13+1152*x^12+3456*x^11+1536*x^10-11520*x^9-17280*x^8+9600*x^7+28800*x^6-16000*x^4)
,x, algorithm="maxima")
[Out]
1/2*(x^6*e + 6*x^5*e + 9*x^4*e - 10*x^3*e - 30*x^2*e + 25*e)/(16*x^9 + 96*x^8 + 144*x^7 - 160*x^6 - 480*x^5 +
400*x^3 + (x^5 + 6*x^4 + 9*x^3)*e^(4*x) + 8*(x^7 + 6*x^6 + 9*x^5 - 5*x^4 - 15*x^3)*e^(2*x))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(1)*(2700*x^2 + 900*x^3 - 1620*x^4 - 1080*x^5 + 144*x^6 + 324*x^7 + 108*x^8 + 12*x^9 - 1500) + exp(2*
x)*exp(1)*(425*x + 10*x^2 - 450*x^3 - 287*x^4 + 41*x^5 + 99*x^6 + 35*x^7 + 4*x^8 + 225))/(exp(4*x)*(528*x^6 -
720*x^5 - 1080*x^4 + 648*x^7 + 216*x^8 + 24*x^9) + exp(2*x)*(7200*x^4 + 2400*x^5 - 8640*x^6 - 5760*x^7 + 1632*
x^8 + 2592*x^9 + 864*x^10 + 96*x^11) + exp(6*x)*(54*x^4 + 54*x^5 + 18*x^6 + 2*x^7) - 16000*x^4 + 28800*x^6 + 9
600*x^7 - 17280*x^8 - 11520*x^9 + 1536*x^10 + 3456*x^11 + 1152*x^12 + 128*x^13),x)
[Out]
int(-(exp(1)*(2700*x^2 + 900*x^3 - 1620*x^4 - 1080*x^5 + 144*x^6 + 324*x^7 + 108*x^8 + 12*x^9 - 1500) + exp(2*
x)*exp(1)*(425*x + 10*x^2 - 450*x^3 - 287*x^4 + 41*x^5 + 99*x^6 + 35*x^7 + 4*x^8 + 225))/(exp(4*x)*(528*x^6 -
720*x^5 - 1080*x^4 + 648*x^7 + 216*x^8 + 24*x^9) + exp(2*x)*(7200*x^4 + 2400*x^5 - 8640*x^6 - 5760*x^7 + 1632*
x^8 + 2592*x^9 + 864*x^10 + 96*x^11) + exp(6*x)*(54*x^4 + 54*x^5 + 18*x^6 + 2*x^7) - 16000*x^4 + 28800*x^6 + 9
600*x^7 - 17280*x^8 - 11520*x^9 + 1536*x^10 + 3456*x^11 + 1152*x^12 + 128*x^13), x)
________________________________________________________________________________________
sympy [B] time = 0.75, size = 126, normalized size = 3.60
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x**8-35*x**7-99*x**6-41*x**5+287*x**4+450*x**3-10*x**2-425*x-225)*exp(1)*exp(x)**2+(-12*x**9-10
8*x**8-324*x**7-144*x**6+1080*x**5+1620*x**4-900*x**3-2700*x**2+1500)*exp(1))/((2*x**7+18*x**6+54*x**5+54*x**4
)*exp(x)**6+(24*x**9+216*x**8+648*x**7+528*x**6-720*x**5-1080*x**4)*exp(x)**4+(96*x**11+864*x**10+2592*x**9+16
32*x**8-5760*x**7-8640*x**6+2400*x**5+7200*x**4)*exp(x)**2+128*x**13+1152*x**12+3456*x**11+1536*x**10-11520*x*
*9-17280*x**8+9600*x**7+28800*x**6-16000*x**4),x)
[Out]
(E*x**6 + 6*E*x**5 + 9*E*x**4 - 10*E*x**3 - 30*E*x**2 + 25*E)/(32*x**9 + 192*x**8 + 288*x**7 - 320*x**6 - 960*
x**5 + 800*x**3 + (2*x**5 + 12*x**4 + 18*x**3)*exp(4*x) + (16*x**7 + 96*x**6 + 144*x**5 - 80*x**4 - 240*x**3)*
exp(2*x))
________________________________________________________________________________________