3.85.98
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [F] time = 3.93, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(75*x^3 - 30*x^4 + 3*x^5 + E^(3/x)*(15 + 2*x + 24*x^2 - 10*x^3 + x^4) + (-(E^(3/x)*x^2) - 3*x^3)*Log[(E^(3
/x) + 3*x)/x])/(75*x^5 - 30*x^6 + 3*x^7 + E^(3/x)*(25*x^4 - 10*x^5 + x^6) + (-30*x^4 + 6*x^5 + E^(3/x)*(-10*x^
3 + 2*x^4))*Log[(E^(3/x) + 3*x)/x] + (E^(3/x)*x^2 + 3*x^3)*Log[(E^(3/x) + 3*x)/x]^2),x]
[Out]
24*Defer[Int][(-5*x + x^2 + Log[3 + E^(3/x)/x])^(-2), x] + 15*Defer[Int][1/(x^2*(-5*x + x^2 + Log[3 + E^(3/x)/
x])^2), x] + 2*Defer[Int][1/(x*(-5*x + x^2 + Log[3 + E^(3/x)/x])^2), x] - 15*Defer[Int][x/(-5*x + x^2 + Log[3
+ E^(3/x)/x])^2, x] + 2*Defer[Int][x^2/(-5*x + x^2 + Log[3 + E^(3/x)/x])^2, x] - 6*Defer[Int][1/((E^(3/x) + 3*
x)*(-5*x + x^2 + Log[3 + E^(3/x)/x])^2), x] - 45*Defer[Int][1/(x*(E^(3/x) + 3*x)*(-5*x + x^2 + Log[3 + E^(3/x)
/x])^2), x] + 3*Defer[Int][x/((E^(3/x) + 3*x)*(-5*x + x^2 + Log[3 + E^(3/x)/x])^2), x] - Defer[Int][(-5*x + x^
2 + Log[3 + E^(3/x)/x])^(-1), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 29, normalized size = 0.97
Antiderivative was successfully verified.
[In]
Integrate[(75*x^3 - 30*x^4 + 3*x^5 + E^(3/x)*(15 + 2*x + 24*x^2 - 10*x^3 + x^4) + (-(E^(3/x)*x^2) - 3*x^3)*Log
[(E^(3/x) + 3*x)/x])/(75*x^5 - 30*x^6 + 3*x^7 + E^(3/x)*(25*x^4 - 10*x^5 + x^6) + (-30*x^4 + 6*x^5 + E^(3/x)*(
-10*x^3 + 2*x^4))*Log[(E^(3/x) + 3*x)/x] + (E^(3/x)*x^2 + 3*x^3)*Log[(E^(3/x) + 3*x)/x]^2),x]
[Out]
(5 - x)/(-5*x + x^2 + Log[3 + E^(3/x)/x])
________________________________________________________________________________________
fricas [A] time = 0.49, size = 29, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2*exp(3/x)-3*x^3)*log((exp(3/x)+3*x)/x)+(x^4-10*x^3+24*x^2+2*x+15)*exp(3/x)+3*x^5-30*x^4+75*x^3
)/((x^2*exp(3/x)+3*x^3)*log((exp(3/x)+3*x)/x)^2+((2*x^4-10*x^3)*exp(3/x)+6*x^5-30*x^4)*log((exp(3/x)+3*x)/x)+(
x^6-10*x^5+25*x^4)*exp(3/x)+3*x^7-30*x^6+75*x^5),x, algorithm="fricas")
[Out]
-(x - 5)/(x^2 - 5*x + log((3*x + e^(3/x))/x))
________________________________________________________________________________________
giac [A] time = 0.39, size = 29, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2*exp(3/x)-3*x^3)*log((exp(3/x)+3*x)/x)+(x^4-10*x^3+24*x^2+2*x+15)*exp(3/x)+3*x^5-30*x^4+75*x^3
)/((x^2*exp(3/x)+3*x^3)*log((exp(3/x)+3*x)/x)^2+((2*x^4-10*x^3)*exp(3/x)+6*x^5-30*x^4)*log((exp(3/x)+3*x)/x)+(
x^6-10*x^5+25*x^4)*exp(3/x)+3*x^7-30*x^6+75*x^5),x, algorithm="giac")
[Out]
-(x - 5)/(x^2 - 5*x + log((3*x + e^(3/x))/x))
________________________________________________________________________________________
maple [C] time = 0.15, size = 170, normalized size = 5.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-x^2*exp(3/x)-3*x^3)*ln((exp(3/x)+3*x)/x)+(x^4-10*x^3+24*x^2+2*x+15)*exp(3/x)+3*x^5-30*x^4+75*x^3)/((x^2
*exp(3/x)+3*x^3)*ln((exp(3/x)+3*x)/x)^2+((2*x^4-10*x^3)*exp(3/x)+6*x^5-30*x^4)*ln((exp(3/x)+3*x)/x)+(x^6-10*x^
5+25*x^4)*exp(3/x)+3*x^7-30*x^6+75*x^5),x,method=_RETURNVERBOSE)
[Out]
-2*(x-5)/(-I*Pi*csgn(I/x)*csgn(I*(1/3*exp(3/x)+x))*csgn(I/x*(1/3*exp(3/x)+x))+I*Pi*csgn(I/x)*csgn(I/x*(1/3*exp
(3/x)+x))^2+I*Pi*csgn(I*(1/3*exp(3/x)+x))*csgn(I/x*(1/3*exp(3/x)+x))^2-I*Pi*csgn(I/x*(1/3*exp(3/x)+x))^3+2*x^2
+2*ln(3)-10*x-2*ln(x)+2*ln(1/3*exp(3/x)+x))
________________________________________________________________________________________
maxima [A] time = 0.42, size = 29, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2*exp(3/x)-3*x^3)*log((exp(3/x)+3*x)/x)+(x^4-10*x^3+24*x^2+2*x+15)*exp(3/x)+3*x^5-30*x^4+75*x^3
)/((x^2*exp(3/x)+3*x^3)*log((exp(3/x)+3*x)/x)^2+((2*x^4-10*x^3)*exp(3/x)+6*x^5-30*x^4)*log((exp(3/x)+3*x)/x)+(
x^6-10*x^5+25*x^4)*exp(3/x)+3*x^7-30*x^6+75*x^5),x, algorithm="maxima")
[Out]
-(x - 5)/(x^2 - 5*x + log(3*x + e^(3/x)) - log(x))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(3/x)*(2*x + 24*x^2 - 10*x^3 + x^4 + 15) - log((3*x + exp(3/x))/x)*(x^2*exp(3/x) + 3*x^3) + 75*x^3 - 3
0*x^4 + 3*x^5)/(log((3*x + exp(3/x))/x)^2*(x^2*exp(3/x) + 3*x^3) - log((3*x + exp(3/x))/x)*(exp(3/x)*(10*x^3 -
2*x^4) + 30*x^4 - 6*x^5) + exp(3/x)*(25*x^4 - 10*x^5 + x^6) + 75*x^5 - 30*x^6 + 3*x^7),x)
[Out]
int((exp(3/x)*(2*x + 24*x^2 - 10*x^3 + x^4 + 15) - log((3*x + exp(3/x))/x)*(x^2*exp(3/x) + 3*x^3) + 75*x^3 - 3
0*x^4 + 3*x^5)/(log((3*x + exp(3/x))/x)^2*(x^2*exp(3/x) + 3*x^3) - log((3*x + exp(3/x))/x)*(exp(3/x)*(10*x^3 -
2*x^4) + 30*x^4 - 6*x^5) + exp(3/x)*(25*x^4 - 10*x^5 + x^6) + 75*x^5 - 30*x^6 + 3*x^7), x)
________________________________________________________________________________________
sympy [A] time = 0.55, size = 20, normalized size = 0.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x**2*exp(3/x)-3*x**3)*ln((exp(3/x)+3*x)/x)+(x**4-10*x**3+24*x**2+2*x+15)*exp(3/x)+3*x**5-30*x**4+
75*x**3)/((x**2*exp(3/x)+3*x**3)*ln((exp(3/x)+3*x)/x)**2+((2*x**4-10*x**3)*exp(3/x)+6*x**5-30*x**4)*ln((exp(3/
x)+3*x)/x)+(x**6-10*x**5+25*x**4)*exp(3/x)+3*x**7-30*x**6+75*x**5),x)
[Out]
(5 - x)/(x**2 - 5*x + log((3*x + exp(3/x))/x))
________________________________________________________________________________________