Optimal. Leaf size=30 \[ 4+\frac {1}{-x+\frac {\log \left (3+\frac {e^{3/x}}{x}\right )}{5-x}} \]
________________________________________________________________________________________
Rubi [F] time = 3.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {75 x^3-30 x^4+3 x^5+e^{3/x} \left (15+2 x+24 x^2-10 x^3+x^4\right )+\left (-e^{3/x} x^2-3 x^3\right ) \log \left (\frac {e^{3/x}+3 x}{x}\right )}{75 x^5-30 x^6+3 x^7+e^{3/x} \left (25 x^4-10 x^5+x^6\right )+\left (-30 x^4+6 x^5+e^{3/x} \left (-10 x^3+2 x^4\right )\right ) \log \left (\frac {e^{3/x}+3 x}{x}\right )+\left (e^{3/x} x^2+3 x^3\right ) \log ^2\left (\frac {e^{3/x}+3 x}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-5+x) \left (3 (-5+x) x^3+e^{3/x} \left (-3-x-5 x^2+x^3\right )\right )-x^2 \left (e^{3/x}+3 x\right ) \log \left (3+\frac {e^{3/x}}{x}\right )}{x^2 \left (e^{3/x}+3 x\right ) \left ((-5+x) x+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx\\ &=\int \left (\frac {3 \left (-15-2 x+x^2\right )}{x \left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}+\frac {15+2 x+24 x^2-10 x^3+x^4-x^2 \log \left (3+\frac {e^{3/x}}{x}\right )}{x^2 \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}\right ) \, dx\\ &=3 \int \frac {-15-2 x+x^2}{x \left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx+\int \frac {15+2 x+24 x^2-10 x^3+x^4-x^2 \log \left (3+\frac {e^{3/x}}{x}\right )}{x^2 \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx\\ &=3 \int \left (-\frac {2}{\left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}-\frac {15}{x \left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}+\frac {x}{\left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}\right ) \, dx+\int \left (\frac {15+2 x+24 x^2-15 x^3+2 x^4}{x^2 \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}-\frac {1}{-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )}\right ) \, dx\\ &=3 \int \frac {x}{\left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-6 \int \frac {1}{\left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-45 \int \frac {1}{x \left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx+\int \frac {15+2 x+24 x^2-15 x^3+2 x^4}{x^2 \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-\int \frac {1}{-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )} \, dx\\ &=3 \int \frac {x}{\left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-6 \int \frac {1}{\left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-45 \int \frac {1}{x \left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-\int \frac {1}{-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )} \, dx+\int \left (\frac {24}{\left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}+\frac {15}{x^2 \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}+\frac {2}{x \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}-\frac {15 x}{\left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}+\frac {2 x^2}{\left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{x \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx+2 \int \frac {x^2}{\left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx+3 \int \frac {x}{\left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-6 \int \frac {1}{\left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx+15 \int \frac {1}{x^2 \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-15 \int \frac {x}{\left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx+24 \int \frac {1}{\left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-45 \int \frac {1}{x \left (e^{3/x}+3 x\right ) \left (-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )\right )^2} \, dx-\int \frac {1}{-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 29, normalized size = 0.97 \begin {gather*} \frac {5-x}{-5 x+x^2+\log \left (3+\frac {e^{3/x}}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 29, normalized size = 0.97 \begin {gather*} -\frac {x - 5}{x^{2} - 5 \, x + \log \left (\frac {3 \, x + e^{\frac {3}{x}}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 29, normalized size = 0.97 \begin {gather*} -\frac {x - 5}{x^{2} - 5 \, x + \log \left (\frac {3 \, x + e^{\frac {3}{x}}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 170, normalized size = 5.67
method | result | size |
risch | \(-\frac {2 \left (x -5\right )}{-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\frac {{\mathrm e}^{\frac {3}{x}}}{3}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{\frac {3}{x}}}{3}+x \right )}{x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{\frac {3}{x}}}{3}+x \right )}{x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (\frac {{\mathrm e}^{\frac {3}{x}}}{3}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{\frac {3}{x}}}{3}+x \right )}{x}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{\frac {3}{x}}}{3}+x \right )}{x}\right )^{3}+2 x^{2}+2 \ln \relax (3)-10 x -2 \ln \relax (x )+2 \ln \left (\frac {{\mathrm e}^{\frac {3}{x}}}{3}+x \right )}\) | \(170\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 29, normalized size = 0.97 \begin {gather*} -\frac {x - 5}{x^{2} - 5 \, x + \log \left (3 \, x + e^{\frac {3}{x}}\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{3/x}\,\left (x^4-10\,x^3+24\,x^2+2\,x+15\right )-\ln \left (\frac {3\,x+{\mathrm {e}}^{3/x}}{x}\right )\,\left (x^2\,{\mathrm {e}}^{3/x}+3\,x^3\right )+75\,x^3-30\,x^4+3\,x^5}{{\ln \left (\frac {3\,x+{\mathrm {e}}^{3/x}}{x}\right )}^2\,\left (x^2\,{\mathrm {e}}^{3/x}+3\,x^3\right )-\ln \left (\frac {3\,x+{\mathrm {e}}^{3/x}}{x}\right )\,\left ({\mathrm {e}}^{3/x}\,\left (10\,x^3-2\,x^4\right )+30\,x^4-6\,x^5\right )+{\mathrm {e}}^{3/x}\,\left (x^6-10\,x^5+25\,x^4\right )+75\,x^5-30\,x^6+3\,x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 20, normalized size = 0.67 \begin {gather*} \frac {5 - x}{x^{2} - 5 x + \log {\left (\frac {3 x + e^{\frac {3}{x}}}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________