3.89.43
Optimal. Leaf size=35
________________________________________________________________________________________
Rubi [A] time = 0.52, antiderivative size = 35, normalized size of antiderivative = 1.00,
number of steps used = 23, number of rules used = 5, integrand size = 57, = 0.088, Rules used
= {6742, 2194, 2176, 2196, 2554}
Antiderivative was successfully verified.
[In]
Int[(4 - E^x - x - 4*x^5 + (2*x - x^2)*Log[E^((-4 - 2*x + E^3*x - x^5)/x)/x])/E^x,x]
[Out]
-x + (x^2*Log[E^(-2 + E^3 - 4/x - x^4)/x])/E^x
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2196
Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] && !$UseGamma === True
Rule 2554
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 33, normalized size = 0.94
Antiderivative was successfully verified.
[In]
Integrate[(4 - E^x - x - 4*x^5 + (2*x - x^2)*Log[E^((-4 - 2*x + E^3*x - x^5)/x)/x])/E^x,x]
[Out]
x*(-1 + (x*Log[E^(-2 + E^3 - 4/x - x^4)/x])/E^x)
________________________________________________________________________________________
fricas [A] time = 0.53, size = 39, normalized size = 1.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2+2*x)*log(exp((x*exp(3)-x^5-2*x-4)/x)/x)-exp(x)-4*x^5-x+4)/exp(x),x, algorithm="fricas")
[Out]
(x^2*log(e^(-(x^5 - x*e^3 + 2*x + 4)/x)/x) - x*e^x)*e^(-x)
________________________________________________________________________________________
giac [A] time = 0.16, size = 50, normalized size = 1.43
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2+2*x)*log(exp((x*exp(3)-x^5-2*x-4)/x)/x)-exp(x)-4*x^5-x+4)/exp(x),x, algorithm="giac")
[Out]
-x^6*e^(-x) - x^2*e^(-x)*log(x) - 2*x^2*e^(-x) + x^2*e^(-x + 3) - 4*x*e^(-x) - x
________________________________________________________________________________________
maple [C] time = 0.25, size = 237, normalized size = 6.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-x^2+2*x)*ln(exp((x*exp(3)-x^5-2*x-4)/x)/x)-exp(x)-4*x^5-x+4)/exp(x),x,method=_RETURNVERBOSE)
[Out]
x^2*exp(-x)*ln(exp((x*exp(3)-x^5-2*x-4)/x))-1/2*x*(I*Pi*x*csgn(I/x)*csgn(I*exp((x*exp(3)-x^5-2*x-4)/x))*csgn(I
/x*exp((x*exp(3)-x^5-2*x-4)/x))-I*Pi*x*csgn(I/x)*csgn(I/x*exp((x*exp(3)-x^5-2*x-4)/x))^2-I*Pi*x*csgn(I*exp((x*
exp(3)-x^5-2*x-4)/x))*csgn(I/x*exp((x*exp(3)-x^5-2*x-4)/x))^2+I*Pi*x*csgn(I/x*exp((x*exp(3)-x^5-2*x-4)/x))^3+2
*x*ln(x)+2*exp(x))*exp(-x)
________________________________________________________________________________________
maxima [B] time = 0.42, size = 91, normalized size = 2.60
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2+2*x)*log(exp((x*exp(3)-x^5-2*x-4)/x)/x)-exp(x)-4*x^5-x+4)/exp(x),x, algorithm="maxima")
[Out]
-(x^6 + 4*x^5 + 20*x^4 + 80*x^3 - x^2*(e^3 - 242) + x^2*log(x) + 485*x + 477)*e^(-x) + 4*(x^5 + 5*x^4 + 20*x^3
+ 60*x^2 + 120*x + 120)*e^(-x) + (x + 1)*e^(-x) - x - 4*e^(-x)
________________________________________________________________________________________
mupad [B] time = 5.58, size = 121, normalized size = 3.46
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-exp(-x)*(x + exp(x) - log(exp(-(2*x - x*exp(3) + x^5 + 4)/x)/x)*(2*x - x^2) + 4*x^5 - 4),x)
[Out]
4*exp(-x)*(120*x + 60*x^2 + 20*x^3 + 5*x^4 + x^5 + 120) - 481*exp(-x) - 485*x*exp(-x) - x + exp(-x)*(x + 1) -
242*x^2*exp(-x) - 80*x^3*exp(-x) - 20*x^4*exp(-x) - 4*x^5*exp(-x) - x^6*exp(-x) + x^2*exp(3 - x) + x^2*log(1/x
)*exp(-x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x**2+2*x)*ln(exp((x*exp(3)-x**5-2*x-4)/x)/x)-exp(x)-4*x**5-x+4)/exp(x),x)
[Out]
Timed out
________________________________________________________________________________________