Optimal. Leaf size=35 \[ -x+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.52, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 23, number of rules used = 5, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {6742, 2194, 2176, 2196, 2554} \begin {gather*} e^{-x} x^2 \log \left (\frac {e^{-x^4-\frac {4}{x}+e^3-2}}{x}\right )-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+4 e^{-x}-e^{-x} x-4 e^{-x} x^5+e^{-x} (2-x) x \log \left (\frac {e^{-2 \left (1-\frac {e^3}{2}\right )-\frac {4}{x}-x^4}}{x}\right )\right ) \, dx\\ &=-x+4 \int e^{-x} \, dx-4 \int e^{-x} x^5 \, dx-\int e^{-x} x \, dx+\int e^{-x} (2-x) x \log \left (\frac {e^{-2 \left (1-\frac {e^3}{2}\right )-\frac {4}{x}-x^4}}{x}\right ) \, dx\\ &=-4 e^{-x}-x+e^{-x} x+4 e^{-x} x^5+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )-20 \int e^{-x} x^4 \, dx-\int e^{-x} \, dx-\int e^{-x} \left (4-x-4 x^5\right ) \, dx\\ &=-3 e^{-x}-x+e^{-x} x+20 e^{-x} x^4+4 e^{-x} x^5+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )-80 \int e^{-x} x^3 \, dx-\int \left (4 e^{-x}-e^{-x} x-4 e^{-x} x^5\right ) \, dx\\ &=-3 e^{-x}-x+e^{-x} x+80 e^{-x} x^3+20 e^{-x} x^4+4 e^{-x} x^5+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )-4 \int e^{-x} \, dx+4 \int e^{-x} x^5 \, dx-240 \int e^{-x} x^2 \, dx+\int e^{-x} x \, dx\\ &=e^{-x}-x+240 e^{-x} x^2+80 e^{-x} x^3+20 e^{-x} x^4+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )+20 \int e^{-x} x^4 \, dx-480 \int e^{-x} x \, dx+\int e^{-x} \, dx\\ &=-x+480 e^{-x} x+240 e^{-x} x^2+80 e^{-x} x^3+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )+80 \int e^{-x} x^3 \, dx-480 \int e^{-x} \, dx\\ &=480 e^{-x}-x+480 e^{-x} x+240 e^{-x} x^2+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )+240 \int e^{-x} x^2 \, dx\\ &=480 e^{-x}-x+480 e^{-x} x+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )+480 \int e^{-x} x \, dx\\ &=480 e^{-x}-x+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )+480 \int e^{-x} \, dx\\ &=-x+e^{-x} x^2 \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 33, normalized size = 0.94 \begin {gather*} x \left (-1+e^{-x} x \log \left (\frac {e^{-2+e^3-\frac {4}{x}-x^4}}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 39, normalized size = 1.11 \begin {gather*} {\left (x^{2} \log \left (\frac {e^{\left (-\frac {x^{5} - x e^{3} + 2 \, x + 4}{x}\right )}}{x}\right ) - x e^{x}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 50, normalized size = 1.43 \begin {gather*} -x^{6} e^{\left (-x\right )} - x^{2} e^{\left (-x\right )} \log \relax (x) - 2 \, x^{2} e^{\left (-x\right )} + x^{2} e^{\left (-x + 3\right )} - 4 \, x e^{\left (-x\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.25, size = 237, normalized size = 6.77
method | result | size |
risch | \(x^{2} {\mathrm e}^{-x} \ln \left ({\mathrm e}^{\frac {x \,{\mathrm e}^{3}-x^{5}-2 x -4}{x}}\right )-\frac {x \left (i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {x \,{\mathrm e}^{3}-x^{5}-2 x -4}{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {x \,{\mathrm e}^{3}-x^{5}-2 x -4}{x}}}{x}\right )-i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {x \,{\mathrm e}^{3}-x^{5}-2 x -4}{x}}}{x}\right )^{2}-i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {x \,{\mathrm e}^{3}-x^{5}-2 x -4}{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {x \,{\mathrm e}^{3}-x^{5}-2 x -4}{x}}}{x}\right )^{2}+i \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {x \,{\mathrm e}^{3}-x^{5}-2 x -4}{x}}}{x}\right )^{3}+2 x \ln \relax (x )+2 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{2}\) | \(237\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 91, normalized size = 2.60 \begin {gather*} -{\left (x^{6} + 4 \, x^{5} + 20 \, x^{4} + 80 \, x^{3} - x^{2} {\left (e^{3} - 242\right )} + x^{2} \log \relax (x) + 485 \, x + 477\right )} e^{\left (-x\right )} + 4 \, {\left (x^{5} + 5 \, x^{4} + 20 \, x^{3} + 60 \, x^{2} + 120 \, x + 120\right )} e^{\left (-x\right )} + {\left (x + 1\right )} e^{\left (-x\right )} - x - 4 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.58, size = 121, normalized size = 3.46 \begin {gather*} 4\,{\mathrm {e}}^{-x}\,\left (x^5+5\,x^4+20\,x^3+60\,x^2+120\,x+120\right )-481\,{\mathrm {e}}^{-x}-485\,x\,{\mathrm {e}}^{-x}-x+{\mathrm {e}}^{-x}\,\left (x+1\right )-242\,x^2\,{\mathrm {e}}^{-x}-80\,x^3\,{\mathrm {e}}^{-x}-20\,x^4\,{\mathrm {e}}^{-x}-4\,x^5\,{\mathrm {e}}^{-x}-x^6\,{\mathrm {e}}^{-x}+x^2\,{\mathrm {e}}^{3-x}+x^2\,\ln \left (\frac {1}{x}\right )\,{\mathrm {e}}^{-x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________