3.89.43 ex(4exx4x5+(2xx2)log(e42x+e3xx5xx))dx

Optimal. Leaf size=35 x+exx2log(e2+e34xx4x)

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 23, number of rules used = 5, integrand size = 57, number of rulesintegrand size = 0.088, Rules used = {6742, 2194, 2176, 2196, 2554} exx2log(ex44x+e32x)x

Antiderivative was successfully verified.

[In]

Int[(4 - E^x - x - 4*x^5 + (2*x - x^2)*Log[E^((-4 - 2*x + E^3*x - x^5)/x)/x])/E^x,x]

[Out]

-x + (x^2*Log[E^(-2 + E^3 - 4/x - x^4)/x])/E^x

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rule 2554

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(1+4exexx4exx5+ex(2x)xlog(e2(1e32)4xx4x))dx=x+4exdx4exx5dxexxdx+ex(2x)xlog(e2(1e32)4xx4x)dx=4exx+exx+4exx5+exx2log(e2+e34xx4x)20exx4dxexdxex(4x4x5)dx=3exx+exx+20exx4+4exx5+exx2log(e2+e34xx4x)80exx3dx(4exexx4exx5)dx=3exx+exx+80exx3+20exx4+4exx5+exx2log(e2+e34xx4x)4exdx+4exx5dx240exx2dx+exxdx=exx+240exx2+80exx3+20exx4+exx2log(e2+e34xx4x)+20exx4dx480exxdx+exdx=x+480exx+240exx2+80exx3+exx2log(e2+e34xx4x)+80exx3dx480exdx=480exx+480exx+240exx2+exx2log(e2+e34xx4x)+240exx2dx=480exx+480exx+exx2log(e2+e34xx4x)+480exxdx=480exx+exx2log(e2+e34xx4x)+480exdx=x+exx2log(e2+e34xx4x)

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 33, normalized size = 0.94 x(1+exxlog(e2+e34xx4x))

Antiderivative was successfully verified.

[In]

Integrate[(4 - E^x - x - 4*x^5 + (2*x - x^2)*Log[E^((-4 - 2*x + E^3*x - x^5)/x)/x])/E^x,x]

[Out]

x*(-1 + (x*Log[E^(-2 + E^3 - 4/x - x^4)/x])/E^x)

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 39, normalized size = 1.11 (x2log(e(x5xe3+2x+4x)x)xex)e(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2+2*x)*log(exp((x*exp(3)-x^5-2*x-4)/x)/x)-exp(x)-4*x^5-x+4)/exp(x),x, algorithm="fricas")

[Out]

(x^2*log(e^(-(x^5 - x*e^3 + 2*x + 4)/x)/x) - x*e^x)*e^(-x)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 50, normalized size = 1.43 x6e(x)x2e(x)log(x)2x2e(x)+x2e(x+3)4xe(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2+2*x)*log(exp((x*exp(3)-x^5-2*x-4)/x)/x)-exp(x)-4*x^5-x+4)/exp(x),x, algorithm="giac")

[Out]

-x^6*e^(-x) - x^2*e^(-x)*log(x) - 2*x^2*e^(-x) + x^2*e^(-x + 3) - 4*x*e^(-x) - x

________________________________________________________________________________________

maple [C]  time = 0.25, size = 237, normalized size = 6.77




method result size



risch x2exln(exe3x52x4x)x(iπxcsgn(ix)csgn(iexe3x52x4x)csgn(iexe3x52x4xx)iπxcsgn(ix)csgn(iexe3x52x4xx)2iπxcsgn(iexe3x52x4x)csgn(iexe3x52x4xx)2+iπxcsgn(iexe3x52x4xx)3+2xln(x)+2ex)ex2 237



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-x^2+2*x)*ln(exp((x*exp(3)-x^5-2*x-4)/x)/x)-exp(x)-4*x^5-x+4)/exp(x),x,method=_RETURNVERBOSE)

[Out]

x^2*exp(-x)*ln(exp((x*exp(3)-x^5-2*x-4)/x))-1/2*x*(I*Pi*x*csgn(I/x)*csgn(I*exp((x*exp(3)-x^5-2*x-4)/x))*csgn(I
/x*exp((x*exp(3)-x^5-2*x-4)/x))-I*Pi*x*csgn(I/x)*csgn(I/x*exp((x*exp(3)-x^5-2*x-4)/x))^2-I*Pi*x*csgn(I*exp((x*
exp(3)-x^5-2*x-4)/x))*csgn(I/x*exp((x*exp(3)-x^5-2*x-4)/x))^2+I*Pi*x*csgn(I/x*exp((x*exp(3)-x^5-2*x-4)/x))^3+2
*x*ln(x)+2*exp(x))*exp(-x)

________________________________________________________________________________________

maxima [B]  time = 0.42, size = 91, normalized size = 2.60 (x6+4x5+20x4+80x3x2(e3242)+x2log(x)+485x+477)e(x)+4(x5+5x4+20x3+60x2+120x+120)e(x)+(x+1)e(x)x4e(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2+2*x)*log(exp((x*exp(3)-x^5-2*x-4)/x)/x)-exp(x)-4*x^5-x+4)/exp(x),x, algorithm="maxima")

[Out]

-(x^6 + 4*x^5 + 20*x^4 + 80*x^3 - x^2*(e^3 - 242) + x^2*log(x) + 485*x + 477)*e^(-x) + 4*(x^5 + 5*x^4 + 20*x^3
 + 60*x^2 + 120*x + 120)*e^(-x) + (x + 1)*e^(-x) - x - 4*e^(-x)

________________________________________________________________________________________

mupad [B]  time = 5.58, size = 121, normalized size = 3.46 4ex(x5+5x4+20x3+60x2+120x+120)481ex485xexx+ex(x+1)242x2ex80x3ex20x4ex4x5exx6ex+x2e3x+x2ln(1x)ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(-x)*(x + exp(x) - log(exp(-(2*x - x*exp(3) + x^5 + 4)/x)/x)*(2*x - x^2) + 4*x^5 - 4),x)

[Out]

4*exp(-x)*(120*x + 60*x^2 + 20*x^3 + 5*x^4 + x^5 + 120) - 481*exp(-x) - 485*x*exp(-x) - x + exp(-x)*(x + 1) -
242*x^2*exp(-x) - 80*x^3*exp(-x) - 20*x^4*exp(-x) - 4*x^5*exp(-x) - x^6*exp(-x) + x^2*exp(3 - x) + x^2*log(1/x
)*exp(-x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x**2+2*x)*ln(exp((x*exp(3)-x**5-2*x-4)/x)/x)-exp(x)-4*x**5-x+4)/exp(x),x)

[Out]

Timed out

________________________________________________________________________________________