\(\int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx\) [481]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 196 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {3 (5 A-7 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 a d}+\frac {5 (A-B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {(5 A-7 B) \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {5 (A-B) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}+\frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \] Output:

-3/5*(5*A-7*B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec( 
d*x+c)^(1/2)/a/d+5/3*(A-B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c, 
2^(1/2))*sec(d*x+c)^(1/2)/a/d-1/5*(5*A-7*B)*sin(d*x+c)/a/d/sec(d*x+c)^(3/2 
)+5/3*(A-B)*sin(d*x+c)/a/d/sec(d*x+c)^(1/2)+(A-B)*sin(d*x+c)/d/sec(d*x+c)^ 
(3/2)/(a+a*sec(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.52 (sec) , antiderivative size = 518, normalized size of antiderivative = 2.64 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (60 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )-84 \sqrt {2} B e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )+200 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}-200 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}+\sqrt {\sec (c+d x)} \left (3 (40 A-51 B+(20 A-33 B) \cos (2 c)) \cos (d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right )+40 (A-B) \cos (2 d x) \sin (2 c)+12 B \cos (3 d x) \sin (3 c)-120 (A-B) \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )-12 (20 A-33 B) \cos (c) \sin (d x)+40 (A-B) \cos (2 c) \sin (2 d x)+12 B \cos (3 c) \sin (3 d x)-120 (A-B) \tan \left (\frac {c}{2}\right )\right )\right )}{60 a d (1+\cos (c+d x))} \] Input:

Integrate[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)),x 
]
 

Output:

(Cos[(c + d*x)/2]^2*((60*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + 
 d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d 
*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, 
-E^((2*I)*(c + d*x))]))/E^(I*d*x) - (84*Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 
+ E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + 
E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[ 
1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) + 200*A*Sqrt[Cos[c + d*x] 
]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] - 200*B*Sqrt[Cos[c + d*x]]* 
EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] + Sqrt[Sec[c + d*x]]*(3*(40*A 
 - 51*B + (20*A - 33*B)*Cos[2*c])*Cos[d*x]*Csc[c/2]*Sec[c/2] + 40*(A - B)* 
Cos[2*d*x]*Sin[2*c] + 12*B*Cos[3*d*x]*Sin[3*c] - 120*(A - B)*Sec[c/2]*Sec[ 
(c + d*x)/2]*Sin[(d*x)/2] - 12*(20*A - 33*B)*Cos[c]*Sin[d*x] + 40*(A - B)* 
Cos[2*c]*Sin[2*d*x] + 12*B*Cos[3*c]*Sin[3*d*x] - 120*(A - B)*Tan[c/2])))/( 
60*a*d*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.95, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 3439, 3042, 4508, 27, 3042, 4274, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {A \sec (c+d x)+B}{\sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \csc \left (c+d x+\frac {\pi }{2}\right )+B}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\int -\frac {a (5 A-7 B)-5 a (A-B) \sec (c+d x)}{2 \sec ^{\frac {5}{2}}(c+d x)}dx}{a^2}+\frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {\int \frac {a (5 A-7 B)-5 a (A-B) \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {\int \frac {a (5 A-7 B)-5 a (A-B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{2 a^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {a (5 A-7 B) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)}dx-5 a (A-B) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {a (5 A-7 B) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx-5 a (A-B) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {a (5 A-7 B) \left (\frac {3}{5} \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )-5 a (A-B) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {a (5 A-7 B) \left (\frac {3}{5} \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )-5 a (A-B) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )}{2 a^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {a (5 A-7 B) \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )-5 a (A-B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {a (5 A-7 B) \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )-5 a (A-B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )}{2 a^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {a (5 A-7 B) \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )-5 a (A-B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )}{2 a^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}-\frac {a (5 A-7 B) \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )-5 a (A-B) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )}{2 a^2}\)

Input:

Int[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)),x]
 

Output:

((A - B)*Sin[c + d*x])/(d*Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])) - (a*(5 
*A - 7*B)*((6*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d* 
x]])/(5*d) + (2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))) - 5*a*(A - B)*((2* 
Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + ( 
2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
Maple [A] (verified)

Time = 7.02 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.43

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (25 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+45 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-25 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+48 B \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-40 A -56 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (90 A -30 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-35 A +23 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{15 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(281\)

Input:

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x,method=_RETURNVER 
BOSE)
 

Output:

-1/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x 
+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(25* 
A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+45*A*EllipticE(cos(1/2*d*x+1/2*c), 
2^(1/2))-25*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*B*EllipticE(cos(1/2 
*d*x+1/2*c),2^(1/2)))+48*B*sin(1/2*d*x+1/2*c)^8+(-40*A-56*B)*sin(1/2*d*x+1 
/2*c)^6+(90*A-30*B)*sin(1/2*d*x+1/2*c)^4+(-35*A+23*B)*sin(1/2*d*x+1/2*c)^2 
)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2 
)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
                                                                                    
                                                                                    
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.42 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {25 \, {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 \, {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 \, {\left (\sqrt {2} {\left (5 i \, A - 7 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A - 7 i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 \, {\left (\sqrt {2} {\left (-5 i \, A + 7 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A + 7 i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (6 \, B \cos \left (d x + c\right )^{3} + 2 \, {\left (5 \, A - 2 \, B\right )} \cos \left (d x + c\right )^{2} + 25 \, {\left (A - B\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm= 
"fricas")
 

Output:

-1/30*(25*(sqrt(2)*(I*A - I*B)*cos(d*x + c) + sqrt(2)*(I*A - I*B))*weierst 
rassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 25*(sqrt(2)*(-I*A + I 
*B)*cos(d*x + c) + sqrt(2)*(-I*A + I*B))*weierstrassPInverse(-4, 0, cos(d* 
x + c) - I*sin(d*x + c)) + 9*(sqrt(2)*(5*I*A - 7*I*B)*cos(d*x + c) + sqrt( 
2)*(5*I*A - 7*I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos( 
d*x + c) + I*sin(d*x + c))) + 9*(sqrt(2)*(-5*I*A + 7*I*B)*cos(d*x + c) + s 
qrt(2)*(-5*I*A + 7*I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
 cos(d*x + c) - I*sin(d*x + c))) - 2*(6*B*cos(d*x + c)^3 + 2*(5*A - 2*B)*c 
os(d*x + c)^2 + 25*(A - B)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/ 
(a*d*cos(d*x + c) + a*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sec(d*x + c)^(5/2)), 
x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sec(d*x + c)^(5/2)), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))),x)
 

Output:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}+\sec \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}+\sec \left (d x +c \right )^{3}}d x \right ) b}{a} \] Input:

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x)
 

Output:

(int(sqrt(sec(c + d*x))/(cos(c + d*x)*sec(c + d*x)**3 + sec(c + d*x)**3),x 
)*a + int((sqrt(sec(c + d*x))*cos(c + d*x))/(cos(c + d*x)*sec(c + d*x)**3 
+ sec(c + d*x)**3),x)*b)/a