# |
ODE |
Mathematica result |
Maple result |
\[ {}\left (y^{\prime }\right )^{3}-4 x y y^{\prime }+8 y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}\left (-y+x y^{\prime }\right )^{2} = \left (y^{\prime }\right )^{2}+1 \] |
✓ |
✓ |
|
\[ {}4 \,{\mathrm e}^{2 y} \left (y^{\prime }\right )^{2}+2 x y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}4 \,{\mathrm e}^{2 y} \left (y^{\prime }\right )^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \] |
✗ |
✓ |
|
\[ {}{\mathrm e}^{2 y} \left (y^{\prime }\right )^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \] |
✗ |
✓ |
|
\[ {}x y^{2} \left (y^{\prime }\right )^{2}-y^{3} y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+y^{2} \left (y^{\prime }\right )^{3} \] |
✓ |
✓ |
|
\[ {}a^{2} y \left (y^{\prime }\right )^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ | |
\[ {}\left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \] |
✗ |
✗ |
|
\[ {}y^{2} \left (\left (y^{\prime }\right )^{2}+1\right ) = a^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = \left (x -b \right ) \left (y^{\prime }\right )^{2}+a \] |
✗ |
✓ |
|
\[ {}x^{3} \left (y^{\prime }\right )^{2}+x^{2} y y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}3 x \left (y^{\prime }\right )^{2}-6 y y^{\prime }+x +2 y = 0 \] |
✓ |
✓ |
|
\[ {}y = \left (y^{\prime }\right )^{2} \left (1+x \right ) \] |
✓ |
✓ |
|
\[ {}\left (-y+x y^{\prime }\right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \] |
✓ |
✗ |
|
\[ {}\left (y^{\prime }\right )^{2}+2 y^{\prime } y \cot \relax (x ) = y^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) \left (y^{\prime }\right )^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }\right )^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {y \left (y^{\prime }\right )^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }\right )^{2}-2 x y y^{\prime }+y^{2} = x^{2} y^{2}+x^{4} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}x \left (y^{\prime }\right )^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }\right )^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }\right )^{2}-\left (-1+x \right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \] |
✗ |
✓ |
|
\[ {}4 \left (y^{\prime }\right )^{2} = 9 x \] |
✓ |
✓ |
|
\[ {}y \left (3-4 y\right )^{2} \left (y^{\prime }\right )^{2} = 4-4 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sec \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sec \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = x^{2}+\cos \relax (x ) \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\left (\sin ^{2}\relax (x )\right ) \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = x \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}\left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }+6 y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \cos \relax (x )-{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \relax (x )+1\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sin ^{2}\relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sec ^{2}\relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \cos \relax (x ) x \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos ^{2}\relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (1+2 x \right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) y^{\prime \prime }+2 \cos \relax (x ) y^{\prime }+3 \sin \relax (x ) y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 \tan \relax (x ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (-1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\tan \relax (x ) y^{\prime }+\left (\cos ^{2}\relax (x )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 n x \left (1+x \right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \] |
✗ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+2 x^{3} \left (1+x \right ) y^{\prime }+n^{2} y = 0 \] |
✗ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+\left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = \left (y^{\prime \prime \prime }\right )^{2}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime } = x \] |
✓ |
✓ |
|