# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a x y^{\prime }+b x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+a^{2} x^{2}+c x +a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 x y+1}{y}+\frac {\left (-x +y\right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x +x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sec \relax (x ) \left (\cos ^{2}\relax (y)\right )-\cos \relax (x ) \sin \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{2}-x^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 \left (1-y^{2}\right ) x y+\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) \left (\cos ^{2}\relax (y)\right )+\left (\cos ^{2}\relax (x )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{3}+x^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x +3 y+1+\left (1+x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x -y+2+\left (x +y+3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+2 x y^{2}-x^{2} y^{3}+2 x^{2} y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \relax (x ) = \sec \relax (x ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\left (1+x \right ) y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3} \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+x \right ) y^{\prime }+4 x^{2} y = 2 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+\left (-2 x +1\right ) y = x^{2} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }-2 \left (1+x \right ) y = y^{\frac {5}{2}} \] |
✓ |
✓ |
|
\[ {}y y^{\prime }+x y^{2} = x \] |
✓ |
✓ |
|
\[ {}\sin \relax (y) y^{\prime }+\sin \relax (x ) \cos \relax (y) = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime }+3 y+{\mathrm e}^{x} x^{4} y^{5} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y+1}{1+x} = \sqrt {y+1} \] |
✓ |
✓ |
|
\[ {}x^{4} y \left (3 y+2 x y^{\prime }\right )+x^{2} \left (4 y+3 x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{3} y-y^{2}-\left (2 x^{4}+x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {-y+x y^{\prime }}{\sqrt {x^{2}-y^{2}}} = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +\left (x^{2}+y^{2}+2 y\right ) y^{\prime } = 0 \] | ✓ | ✓ |
|
\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \] | ✓ | ✓ |
|
\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y+2 x^{2} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime }+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-a y+b y^{2} = c \,x^{2 a} \] |
✓ |
✓ |
|
\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x^{2} y = x^{5} \] |
✓ |
✓ |
|
\[ {}\left (-x +y\right )^{2} y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y+x^{4} y^{4} {\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y+\left (1-y\right ) x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 y+5+\left (2 x -y+4\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{\frac {3}{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \] |
✓ |
✓ |
|
\[ {}x y^{2} \left (3 y+x y^{\prime }\right )-2 y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \relax (x ) \] |
✓ |
✓ |
|
\[ {}5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cos \relax (x ) = \frac {\sin \left (2 x \right )}{2} \] |
✓ |
✓ |
|
\[ {}x y^{2}+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y-\left (y+1\right ) x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right ) = \left (x^{2}+y^{2}+x \right ) \left (-y+x y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right )+\sqrt {1+x^{2}+y^{2}}\, \left (y-x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-y^{2} \ln \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{4}+x^{2} y^{3}+x y^{2}+y+\left (x^{4} y^{3}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (y^{\prime }\right )^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (y^{\prime }\right )^{2} = 1 \] |
✓ |
✓ |
|
\[ {}\left (2 x y^{\prime }-y\right )^{2} = 8 x^{3} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) \left (y^{\prime }\right )^{2} = 1 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}-\left (y^{2}+2 x \right ) \left (y^{\prime }\right )^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}4 x \left (y^{\prime }\right )^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (y^{\prime }\right )^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y = -x y^{\prime }+x^{4} \left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x +y^{\prime } y \left (2 \left (y^{\prime }\right )^{2}+3\right ) = 0 \] |
✗ |
✓ |
|
\[ {}a^{2} y \left (y^{\prime }\right )^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (y^{\prime }\right )^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|