# |
ODE |
Mathematica result |
Maple result |
\[ {}[y_{1}^{\prime }\relax (t ) = -2 y_{1}\relax (t )+2 y_{2}\relax (t )-6 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1}\relax (t )+6 y_{2}\relax (t )+2 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -2 y_{1}\relax (t )-2 y_{2}\relax (t )+2 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 3 y_{1}\relax (t )+2 y_{2}\relax (t )-2 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1}\relax (t )+7 y_{2}\relax (t )-2 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -10 y_{1}\relax (t )+10 y_{2}\relax (t )-5 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 3 y_{1}\relax (t )+y_{2}\relax (t )-y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 3 y_{1}\relax (t )+5 y_{2}\relax (t )+y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -6 y_{1}\relax (t )+2 y_{2}\relax (t )+4 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 3 y_{1}\relax (t )+4 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1}\relax (t )+7 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = y_{1}\relax (t )-2 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -7 y_{1}\relax (t )+4 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1}\relax (t )-11 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 3 y_{1}\relax (t )+y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1}\relax (t )+y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 4 y_{1}\relax (t )+12 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -3 y_{1}\relax (t )-8 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -10 y_{1}\relax (t )+9 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -4 y_{1}\relax (t )+2 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -13 y_{1}\relax (t )+16 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -9 y_{1}\relax (t )+11 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 2 y_{2}\relax (t )+y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -4 y_{1}\relax (t )+6 y_{2}\relax (t )+y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 4 y_{2}\relax (t )+2 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}\left [y_{1}^{\prime }\relax (t ) = \frac {y_{1}\relax (t )}{3}+\frac {y_{2}\relax (t )}{3}-y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -\frac {4 y_{1}\relax (t )}{3}-\frac {4 y_{2}\relax (t )}{3}+y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -\frac {2 y_{1}\relax (t )}{3}+\frac {y_{2}\relax (t )}{3}\right ] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1}\relax (t )+y_{2}\relax (t )-y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1}\relax (t )+2 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -y_{1}\relax (t )+3 y_{2}\relax (t )-y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 4 y_{1}\relax (t )-2 y_{2}\relax (t )-2 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1}\relax (t )+3 y_{2}\relax (t )-y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1}\relax (t )-y_{2}\relax (t )+3 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 6 y_{1}\relax (t )-5 y_{2}\relax (t )+3 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1}\relax (t )-y_{2}\relax (t )+3 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1}\relax (t )+y_{2}\relax (t )+y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -11 y_{1}\relax (t )+8 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1}\relax (t )-3 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 15 y_{1}\relax (t )-9 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = 16 y_{1}\relax (t )-9 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1}\relax (t )-4 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = y_{1}\relax (t )-7 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -7 y_{1}\relax (t )+24 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -6 y_{1}\relax (t )+17 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -7 y_{1}\relax (t )+3 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -3 y_{1}\relax (t )-y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1}\relax (t )+y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = y_{1}\relax (t )-y_{2}\relax (t )-2 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -y_{1}\relax (t )-y_{2}\relax (t )-y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -2 y_{1}\relax (t )+2 y_{2}\relax (t )+y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1}\relax (t )+2 y_{2}\relax (t )+y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -3 y_{1}\relax (t )+3 y_{2}\relax (t )+2 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -7 y_{1}\relax (t )-4 y_{2}\relax (t )+4 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = y_{1}\relax (t )+y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -9 y_{1}\relax (t )-5 y_{2}\relax (t )+6 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1}\relax (t )-4 y_{2}\relax (t )-y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 3 y_{1}\relax (t )+6 y_{2}\relax (t )+y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -3 y_{1}\relax (t )-2 y_{2}\relax (t )+3 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 4 y_{1}\relax (t )-8 y_{2}\relax (t )-4 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -3 y_{1}\relax (t )-y_{2}\relax (t )-4 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = y_{1}\relax (t )-y_{2}\relax (t )+9 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -5 y_{1}\relax (t )-y_{2}\relax (t )+11 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -7 y_{1}\relax (t )+y_{2}\relax (t )+13 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -4 y_{1}\relax (t )+8 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 5 y_{1}\relax (t )-y_{2}\relax (t )+y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1}\relax (t )+9 y_{2}\relax (t )-3 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -2 y_{1}\relax (t )+2 y_{2}\relax (t )+4 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = y_{1}\relax (t )+10 y_{2}\relax (t )-12 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1}\relax (t )+2 y_{2}\relax (t )+3 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1}\relax (t )-y_{2}\relax (t )+6 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -6 y_{1}\relax (t )-4 y_{2}\relax (t )-4 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1}\relax (t )-y_{2}\relax (t )+y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1}\relax (t )+3 y_{2}\relax (t )+y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 2 y_{2}\relax (t )-2 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1}\relax (t )+5 y_{2}\relax (t )-3 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = y_{1}\relax (t )+y_{2}\relax (t )+y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -2 y_{1}\relax (t )-12 y_{2}\relax (t )+10 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1}\relax (t )-24 y_{2}\relax (t )+11 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1}\relax (t )-24 y_{2}\relax (t )+8 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1}\relax (t )-12 y_{2}\relax (t )+8 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = y_{1}\relax (t )-9 y_{2}\relax (t )+4 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = y_{1}\relax (t )-6 y_{2}\relax (t )+y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -4 y_{1}\relax (t )-y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1}\relax (t )-3 y_{2}\relax (t )-y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = y_{1}\relax (t )-2 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1}\relax (t )-3 y_{2}\relax (t )+4 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 4 y_{1}\relax (t )+5 y_{2}\relax (t )-8 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1}\relax (t )+3 y_{2}\relax (t )-5 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1}\relax (t )-y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = y_{1}\relax (t )-y_{2}\relax (t ), y_{3}^{\prime }\relax (t ) = -y_{1}\relax (t )-y_{2}\relax (t )-2 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1}\relax (t )+2 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -5 y_{1}\relax (t )+5 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -11 y_{1}\relax (t )+4 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -26 y_{1}\relax (t )+9 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = y_{1}\relax (t )+2 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = -4 y_{1}\relax (t )+5 y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 5 y_{1}\relax (t )-6 y_{2}\relax (t ), y_{2}^{\prime }\relax (t ) = 3 y_{1}\relax (t )-y_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1}\relax (t )-3 y_{2}\relax (t )+y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{2}\relax (t )+2 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 5 y_{1}\relax (t )+y_{2}\relax (t )+y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1}\relax (t )+3 y_{2}\relax (t )+y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = y_{1}\relax (t )-5 y_{2}\relax (t )-3 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = -3 y_{1}\relax (t )+7 y_{2}\relax (t )+3 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = 2 y_{1}\relax (t )+y_{2}\relax (t )-y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = y_{2}\relax (t )+y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = y_{1}\relax (t )+y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1}\relax (t )+y_{2}\relax (t )-3 y_{3}\relax (t ), y_{2}^{\prime }\relax (t ) = 4 y_{1}\relax (t )-y_{2}\relax (t )+2 y_{3}\relax (t ), y_{3}^{\prime }\relax (t ) = 4 y_{1}\relax (t )-2 y_{2}\relax (t )+3 y_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\sin \relax (t ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+{\mathrm e}^{t^{2}} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 t y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 t y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}\cos \relax (t ) y+y^{\prime } = 0 \] | ✓ | ✓ |
|
\[ {}\sqrt {t}\, \sin \relax (t ) y+y^{\prime } = 0 \] | ✓ | ✓ |
|
\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{t} t \] |
✓ |
✓ |
|
\[ {}t^{2} y+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}t^{2} y+y^{\prime } = t^{2} \] |
✓ |
✓ |
|
\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \] |
✓ |
✓ |
|
\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 t y = t \] |
✓ |
✓ |
|
\[ {}t y+y^{\prime } = t +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 t y = 1 \] |
✓ |
✓ |
|
\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{\frac {5}{2}} \] |
✓ |
✓ |
|
\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{t} = \frac {1}{t^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{\sqrt {t}} = {\mathrm e}^{\frac {\sqrt {t}}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{t} = \cos \relax (t )+\frac {\sin \relax (t )}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \relax (t ) y = \cos \relax (t ) \sin \relax (t ) \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (t +1\right ) \left (1+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \] |
✓ |
✓ |
|
\[ {}\cos \relax (y) \sin \relax (t ) y^{\prime } = \cos \relax (t ) \sin \relax (y) \] |
✓ |
✓ |
|
\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \] |
✓ |
✓ |
|
\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \] |
✓ |
✓ |
|
\[ {}\cos \relax (y) y^{\prime } = -\frac {t \sin \relax (y)}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \] |
✓ |
✓ |
|
\[ {}3 t y^{\prime } = \cos \relax (t ) y \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \] |
✓ |
✓ |
|
\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t +y}{t -y} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \] |
✓ |
✓ |
|
\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 t \sin \relax (y)+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \relax (y)+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sec \relax (t ) \tan \relax (t )+\left (\sec ^{2}\relax (t )\right ) y+\left (\tan \relax (t )+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 t \cos \relax (y)+3 t^{2} y+\left (t^{3}-t^{2} \sin \relax (y)-y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 1+y+y^{2} \cos \relax (t ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = t +y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|